期刊文献+

基于安全压缩感知的大数据隐私保护 被引量:3

Big data privacy protection based on secure compressive sensing
下载PDF
导出
摘要 当前的数据"大爆炸"主要受万物互联的驱动,服务于人类衣食住行的各类物联网感知设备时刻在捕获个人隐私数据,然而,这些隐私数据已成为网络攻击的重点目标。分析了资源受限的物联网应用中的数据安全问题,介绍了基于压缩感知理论的隐私保护技术——安全压缩感知,提出了相应的大数据采集方案,并且通过安全性理论和实验分析给出了结论性的呼吁:将安全压缩感知作为一种感知层内置的轻量级加密机制,以近乎零的成本为数据提供第一层安全防护。 The current"big bang"of data is mainly driven by interconnection of all things.Various types of IoT sensing devices serving in daily life are constantly capturing personal privacy data.However,these privacy data have become the key targets of network attacks.Data security issues in the resource-constrained IoT applications were analyzed,a novel privacy protection technique based on compressive sensing theory was introduced,which is called secure compressed sensing,and a corresponding big data collection scheme was proposed.As demonstrated by the theoretical and experimental security analysis,there is a conclusive appeal for that secure compressive sensing can be used as a lightweight encryption mechanism which is built into the perception layer to provide first-level security protection for data at almost zero cost.
作者 王平 张玉书 何兴 仲盛 WANG Ping;ZHANG Yushu;HE Xing;ZHONG Sheng(School of Electronics and Information Engineering,Southwest University,Chongqing 400715,China;College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;Department of Computer Science and Technology,Nanjing University,Nanjing 210023,China)
出处 《大数据》 2020年第1期12-22,共11页 Big Data Research
基金 国家重点研发计划基金资助项目(No.2017YFB0802300) 广西可信软件重点实验室研究课题基金资助项目(No.kx201904).
关键词 安全压缩感知 大数据 物联网 隐私保护 secure compressive sensing big data Internet of things privacy protection
  • 相关文献

参考文献2

二级参考文献61

  • 1Donoho D L.Compressed sensing.IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 2Baraniuk R,et al.A simple proof of the restricted isometry property for random matrices.Constructive Approximation,2008,28(3):253-263.
  • 3Candes E J.The restricted isometry property and its implications for compressed sensing.Comptes Rendus Mathematique,2008,346(9-10):589-592.
  • 4Candes E J et al.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information.IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 5Candes E J,Tao T.Near-optimal signal recovery from randora projections,Universal encoding strategies?IEEE Transactions on Information Theory,2006,52(12):5406-5425.
  • 6Romberg J.Imaging via compressive sampling.IEEE Signal Processing Magazine,2008,25(2):14-20.
  • 7Candes E J,Tao T.Decoding by linear programming.IEEE Transactions on Information Theory,2005,51(3):4203-4215.
  • 8Cand,et al.Sparsity and incoherence in compressive sampiing.Inverse Problems,2007,23(3):969-985.
  • 9Candes E,Tao T.The dantzig selector:Statistical estimation when P is much larger than n.Annals of Statistics,2007,35(6):2313-2351.
  • 10Chen S S,Donoho D L,Saunders M A.Atomic decomposition by basis pursuit.SIAM Journal on Scientific Computing,2001,43(1):129-159.

共引文献239

同被引文献21

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部