期刊文献+

对σ可加集函数分解定理证明的思考

原文传递
导出
摘要 现代概率论是一门非常抽象的学科,其中的一些定理的证明过程非常复杂,有些教材只写出了部分过程,而舍掉了部分推导过程,导致了证明的不完整。本文对σ可加集函数分解定理证明过程进行详细分析,将抽象的表达式具体化,先研究简单的特殊情况,再利用归纳的方法推广到一般的情形。 Modern probability theory is a very abstract subject.The process of proving some of its theorems is very complex.Some textbooks only write part of the process,but give up part of the derivation process,which leads to the incomplete proof.In this paper,the proof process of decomposition theorem ofσadditive set function is analyzed in detail.The abstract expression is concretized,the simple special case is studied first,and then the method of induction is extended to the general case.
作者 张港
出处 《中国多媒体与网络教学学报(电子版)》 2020年第5期247-248,共2页 China Journal of Multimedia & Network Teaching
关键词 广义测度 下极限 Hahn定理 Jordan定理 generalized measure lower limit Hahn’s theorem Jordan theorem
  • 相关文献

参考文献4

二级参考文献18

  • 1张立平,韩继业,徐大川.Existence theorems of solution to variational inequality problems[J].Science China Mathematics,2001,44(2):201-211. 被引量:3
  • 2江泽坚.实变函数论[M].北京:人民教育出版社,1959..
  • 3ZHAO Y B. Existence of a solution to nonlinear variational inequality under generalized positive homogoneity [ J ]. Oper Res Letters,1999,25 : 231 - 239.
  • 4ZHAO Y B, HAN J Y. Exceptional families for a variational inequality problem and its applications [ J ]. J Global Optim, 1999,14:313 -330.
  • 5ZHOU S Z, BAI M R. A new exceptional family of elements for a variational inequality problem on Hilbert space[ J]. Appl Math Lett, 2004,17 : 423 -428.
  • 6SMITH T E. A solution condition for complementarity problems, with an application to spatial price equilibrium [ J ]. Appl Math Computation, 1984,15 : 61 - 69.
  • 7CLARKE F F. Optimization and nonsmooth analysis [M]. New York: J Wiley & Sons,1983.
  • 8OUTRATA W T, KOCVARA M, EOWE J. Nonsmooth approach to optimization problems with equilibrium constraints [ M ]. Dordrecht: Kluwer Academic Publishers, 1998.
  • 9FACCHINEI F, PANG J S. Finte - dimensional variational inequalities and complementarity problems [ M ]. New York : Springer,2003.
  • 10ISAC G, BULAVASKI V, KALASHNIKOV V. Exceptional families, topological degree and complementarity probelems[J]. J Global Optim, 1997,10:207-225.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部