期刊文献+

一种岩石薄片离焦模糊图像自动筛选方法

An automatic screening method for defocused fuzzy image of rock slice
下载PDF
导出
摘要 针对岩石薄片全幅面偏光采集中,部分视域采集的图像会存在离焦模糊问题。本文提出一种模糊图像检测方法,能在薄片全幅面采集的大量偏光图像中,自动检测出存在离焦模糊的视域。由于图像模糊会导致图像空间域和频率域的一些特征产生变化,因此本文结合空间域和频率域方法,对图像分块进行模糊评价得到模糊度图,由该图统计特性将图像区分为清晰图像、局部模糊图像或全局模糊图像,同时还验证了可以将该模糊度图直接用于图像模糊区域分割。实验结果表明,本文算法可以有效筛选出存在模糊的视域,并且在模糊区域分割上也具有较高的准确性。 In the full-width polarizing light acquisition of rock slices,some view fields may be suffered from defocused blur.In this paper,we propose an effective approach for detecting blur image in a large number of polarizing images collected in the whole width of the slice automatically.As image blurring will lead to some characteristic changes on both of the spatial domain and the frequency domain,we combine them for image blur estimation based on the image block to produce a blur map.The image can be classified into clear image,local blur image or global blur image by the statistical characteristics of the blur map.By the way,it is verified that the blur map can be directly used for image blur segmentation.Experimental results show that the proposed algorithm can effectively screen out blur view areas,i.e.,local blur images or global blur images,and has high accuracy in blur region segmentation.
作者 戴万富 滕奇志 何海波 刘豫璋 张豫堃 DAI Wanfu;TENG Qizhi;HE Haibo;LIU Yuzhang;ZHANG Yukun(College of Electronics and Information Engineering,Sichuan university,Chengdu 610065,China;Chengdu Xitu Technology Co.Ltd,Chengdu 610014,China)
出处 《智能计算机与应用》 2022年第3期16-21,共6页 Intelligent Computer and Applications
基金 国家自然科学基金(62071315)
关键词 岩石薄片 模糊图像检测 模糊区域分割 图像再模糊 rock chips image blur detection blur region segmentation image re-blur
  • 相关文献

参考文献2

二级参考文献36

  • 1杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 2WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:From error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.
  • 3CHEN G,YANG C,XIE S.Gradient-based structural similarity for image quality assessment[C]// Proceedings of IEEE International Conference on Image Processing.Piscataway:IEEE Press,2006:2929-2932.
  • 4CHEN Y,LIAO B.An image quality assessment algorithm based on dual-scale edge structure similarity[C]//Proceedings of the Second International Conference on Innovative Computing,Information and Control.Piscataway:IEEE Press,2007:56-58.
  • 5SHNAYDERMAN A,GUSEV A,ESKICIOGLU A M.An SVD-based grayscale image quality measure for local and global assessment[J].IEEE Transactions on Image Processing,2006,15(2):422-429.
  • 6NILL N B,BOUZAS B H.Objective image quality measure derived from digital image power spectra[J].Optical Engineering,1992,31(4):813-825.
  • 7LUO H.A training-based no-reference image quality assessment algorithm[C]// Proceedings of IEEE International Conference on Image Processing.Piscataway:IEEE Press,2004:2973-2976.
  • 8SHEIKH H R,BOVIK A C,CORMACK L.Blind quality assessment of JPEG2000 compressed images using natural scene statistics[C]// Proceedings of the Thirty-Seventh Asilomar Conference on Signals,Systems and Computers.Piscataway:IEEE Press,2003:1403-1407.
  • 9LI X.Blind image quality assessment[C]// Proceedings of IEEE International Conference on Image Processing.Piscataway:IEEE Press,2002:449-452.
  • 10ONG E P,LIN W,LU Z,et al.No-reference JPEG-2000 image quality metric[C]// Proceedings of IEEE International Conference on Multimedia and Expo.Piscataway:IEEE Press,2003:545-548.

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部