期刊文献+

基于改进Deeplabv3+的雾气图像分割 被引量:1

Fog image segmentation based on improved DeepLabv3 Plus
下载PDF
导出
摘要 针对传统雾气图像分割算法耗时长、分割结果存在凹陷等问题,提出一种基于DeepLabv3+的雾气图像分割算法。改进算法将DeepLabv3+原结构编码器的Backbone替换为更轻量的Mobilenetv2网络;将解码器的特征融合结构进行重新设计,同时加入注意力通道模块、边缘细化模块,通过消融实验得到分割效果最佳的雾气图像分割网络。实验结果表明,改进算法对雾气图像的分割精度MIOU可达90.31%,优于以ResNet101为基础的DeepLabv3+算法,且分割速度提高了57.26%,模型容量减少了92.62%。 In view of the time-consuming and denting of the traditional fog image segmentation algorithm,a fog image segmentation algorithm based on DeepLabv3 plus is proposed.The improved algorithm replaces the Backbone of DeepLabv3 plus original structure encoder with a lighter Mobiletv2 network,redesigns the feature fusion structure of the decoder,introduces the attention channel module,edge refinement module,and obtains the fog image segmentation network with the best segmentation effect through ablation experiment.Experimental results show that the MIOU of the improved algorithm can be 90.31%,which is better than the DeepLabv3 plus algorithm based on ResNet101,and the segmentation speed is improved by 57.26 percent and the model capacity is reduced by 92.62 percent.
作者 冯传盟 邢彦锋 李学星 蒋世谊 FENG Chuanmeng;XING Yanfeng;LI Xuexing;JIANG Shiyi(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;School of Mechanical Technology,Wuxi institute of technology,Wuxi Jiangsu 214121,China)
出处 《智能计算机与应用》 2022年第1期89-94,共6页 Intelligent Computer and Applications
基金 上海市自然科学基金(20ZR1422600)
关键词 雾气图像 DeepLabv3+ Mobilenetv2 注意力机制 边界细化 fog image Deeplabv3+ Mobilenetv2 attention mechanism boundary refinement
  • 相关文献

参考文献2

二级参考文献3

共引文献14

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部