期刊文献+

基于深度神经网络的手写数字识别方法研究 被引量:2

Research onhandwritten digit recognition method based on deep neural network
下载PDF
导出
摘要 手写数字识别技术的发展随着人工智能的进步也得到了体现,并已渗入到人们的生活中。文章运用深度神经网络模型(DNN),来完成手写数字识别。通过改进代价函数,使用MNIST数据集对模型进行训练,测试评估模型的准确识别率,手动书写阿拉伯数字输入模型进行测试。实验结果表明,数字的正确识别率平均约为98.24%,改进模型在手写数字识别上有较高的准确性,具有一定的使用价值。 The development of handwritten digit recognition technology has been reflected with the advancement of artificial intelligence,and it has increasingly penetrated into people’s lives.The article uses a deep neural network model(DNN)to complete the handwritten digit recognition task.By improving the cost function,the model is trained using the MNIST data set,then the accuracy of the recognition rate of the model is tested,and finally the Arabic numerals are manually written into the model for testing.Experimental results show that the correct recognition rate of digits is about 98.24%on average,and it can be considered that the improved model has good accuracy in handwritten digit recognition.
作者 徐英卓 梁学斌 XU Yingzhuo;LIANG Xuebin(School of Computer,Xi'anShiyou University,Xi'an 710065,China)
出处 《智能计算机与应用》 2020年第8期24-25,32,共3页 Intelligent Computer and Applications
基金 陕西省自然科学基础研究计划项目(2019JM-383)
关键词 神经网络 手写数字识别 DNN MNIST neural networks handwritten numeral recognition DNN MNIST
  • 相关文献

参考文献3

二级参考文献32

  • 1刘鹏,张岩,毛志刚.一种脉冲噪声图像复原算法[J].计算机研究与发展,2006,43(11):1939-1946. 被引量:4
  • 2Ivanov V K. On linear ill-posed problems [J]. Dokl Akad Nauk SSSR, 1962, 14(145): 270-272.
  • 3Phillips D L. A technique for the numerical solution of certain integral equations of the first kind [J]. Journal of the ACM, 1962, 9(1): 84-97.
  • 4Tikhonov A N. On the Solution of Ill-posed Problems and the Method of Regularization [M]. Providence: American Mathematical Society Press, 1963:1035-1038.
  • 5Pace D, Aylward S, NJethammer M. A locally adaptive regularization based on anisotropie diffusion for deformable image registration of sliding organs [J]. IEEE Trans on Medical Imaging, 2013, 32(11): 2114-2126.
  • 6Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D: Nonlinear Phenomena, 1992, 80(1): 259-268.
  • 7Marquina A, Osher S. Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal [J]. SIAM Journal of Scientific Computing, 2000, 2(22): 387-405.
  • 8Levin A, Fergus R, Durand F, et al. Image and depth from a conventional camera with a coded aperture [J]. ACM Trans on Graphics, 2007, 26(3): 701-709.
  • 9Levin A. Blind motion deblurring using image statistics [C] //Proc of the 20th Annual Conf on Neural Information Processing Systems. Cambridge, CM: MIT, 2006:841-848.
  • 10Shah Q, Jia J, Agarwala A. High-quality motion deblurring from a single image [J]. ACM Trans on Graphics, 2008, 27 (3) : 73-83.

共引文献99

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部