期刊文献+

基于数据挖掘的CRC肠道菌群营养干预可行性分析

Feasibility analysis of CRC intestinal flora nutrition intervention based on data Mining
下载PDF
导出
摘要 随着智能技术与医疗健康领域融合的加深,正在不断提升着医疗服务水平。科学研究已经证明:结直肠癌的发生与肠道菌群存在密切关系。将人工智能运用在结直肠癌(CRC)肠道菌群营养干预上,可以帮助优化资源分配,提高医疗各环节的效率,提升诊疗效果。本文以五种常见肠道菌群为基础,结合数据挖掘的K-Means和Apriori算法,分析了基于数据挖掘的CRC肠道菌群营养干预的可行性。 With the deepening of the integration of intelligent technology and medical and health care,the level of medical services is constantly improving. Scientific research has proved that the occurrence of colorectal cancer is closely related to intestinal flora. The application of artificial intelligence in the nutritional intervention of colorectal cancer(CRC) intestinal flora can help optimize the allocation of resources,improve the efficiency of all aspects of medical treatment and improve the effect of diagnosis and treatment. Based on five common intestinal flora and combined with k-means and Apriori algorithms of data mining,this paper analyzed the feasibility of nutrition intervention for CRC intestinal flora based on data mining.
作者 成雨风 贺松 刘燕 黄诗懿 CHENG Yufeng;HE Song;LIU Yan;HUANG Shiyi(Guizhou University,Guiyang 550025,China)
机构地区 贵州大学
出处 《智能计算机与应用》 2020年第4期81-85,共5页 Intelligent Computer and Applications
关键词 结直肠癌(CRC) 人工智能 肠道菌群 数据挖掘 可行性 CRC Artificial intelligence Intestinal flora Data mining feasibility
  • 相关文献

参考文献7

二级参考文献35

  • 1徐章艳,刘美玲,张师超,卢景丽,区玉明.Apriori算法的三种优化方法[J].计算机工程与应用,2004,40(36):190-192. 被引量:71
  • 2王长君,高岩,张爱红.重点违法行为导致交通事故的数据分析[J].交通运输工程与信息学报,2005,3(3):29-36. 被引量:13
  • 3Han Jiawei, Kamber M. Data Mining: Concepts and Techniques[ M]. Beijing: China Machine Press,2001.
  • 4Agrawal R,Skirant R. Fast Algorithms for Mining Association Rules in Large Databases, IBM Research Report RJ9839[R].San Jose,California: IBM Almaden Research Center, 1994.
  • 5Agrawal R,Srikant R.Fast algorithms for mining association rules in large databases[C]//Proc 20th Int'l Conf Very Large Data Bases,Sept 1994,1994:478-499.
  • 6Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[C]//Proc 2000 ACM-SIGMOD Int Conf Management of Data (SIGMOD'00),Dalas,TX,May 2000.
  • 7Park J S,Chen Ming-Syan,Yu Philip S.Using a hash-based method with transaction trimming for mining association rules[J].IEEE Transactions on Knowledge and Data Engineering,1997,9(5).
  • 8Agrawal R,Srikant R.Fast algorithms for mining association rules Reearch Report RJ 9839[R].IBM Almaden Research Center,San Jose,CA,June 1994.
  • 9Savasere A,Omiecinski E,Navathe S.An efficient algorithm for mining association rules in large databases[C]//Proceedings of the 21st International Conference on Very large Database,1995.
  • 10Brin S,Motwani R,Ullman J D,et al.Dynamic Itemset counting and implication rules for market basket data[C]//ACM SIGMOD International Conference on the Management of Data,1997.

共引文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部