摘要
由于微半球陀螺仪的高品质因数特性,其在惯性精密导引领域优势显著,然而相关学术研究较少,尤其是专用集成电路(ASIC)方面。针对自主研发的微半球陀螺仪,建立了陀螺及其驱动和检测电路的Simulink仿真模型。首先,借助二维弹簧阻尼系统得到了该陀螺仪的物理模型及其参数。实测结果显示,模型与实物之间的振动速率仅相差0.5185 mm/s,验证了模型的准确性。其次,提出了基于力平衡模式的锁相环(PLL)和自动增益控制(AGC)驱动回路以及检测回路的模型,并采用双相位锁定法进行幅度解调。最后,所得驱动回路模型频率与实际振动频率只差-0.1924 Hz,检测电路模型的标度因数为0.0311 V/[(°)/s],检测阈值为-0.0013(°)/s~0.0018(°)/s,相对其他模型改善了22.5%,所提出的微半球陀螺仪及其外围电路的精确模型建立方法和电路结构为后续ASIC设计奠定了基础。
Due to its superior Q-value,the micro-hemisphere gyroscope shines in inertial precision guidance.However,there is limited research on it,specifically regarding its ASIC circuit design.For the self-developed micro-hemisphere gyroscope,a Simulink simulation model for gyroscope and its driving and detection circuits is established.Firstly,the physical model and parameters of the gyroscope are obtained using a two-dimensional spring damping system.The actual measurement results show that the vibration rate disparity between the model and the actual object is merely 0.5185 mm/s,which confirms the accuracy of the model.Then,a model based on force balance mode for phase-locked loop(PLL)and automatic gain control(AGC)driving loop and detection loop is proposed,and amplitude demodulation is performed using dual-phase locking method.Finally,the disparity between the obtained driving loop model frequency and actual vibration frequency is merely-0.1924 Hz.The scale factor of the detection circuit model is 0.0311 V/[(°)/s],and the detection threshold is-0.0013(°)/s~0.0018(°)/s,which is a 22.5%improvement compared to other models.The proposed precise model building method and circuit structure of the micro-hemisphere gyroscope and its peripheral circuits lay the foundation for subsequent ASIC design.
作者
朱建港
ZHU Jiangang(Microsystem&Terahertz Research Center,China Academy of Engineering Physics,Chengdu 610299;Institute of Electronic Engineering,China Academy of Engineering Physics,Mianyang 621900)
出处
《导航与控制》
2024年第1期45-54,72,共11页
Navigation and Control