期刊文献+

深海潜航器导航系统故障检测方法综述

Review of Fault Detection Methods for Deep-sea Submersible Navigation System
原文传递
导出
摘要 随着海洋科学建设的发展,潜航器应用逐渐向深远海、多功能、远航程和超高航速方向发展。组合导航系统因可靠性高、实时性好而广泛用于深海导航中。随着潜航器规模的增加和任务环境的复杂,导航系统的故障率也在升高,一旦发生故障将导致系统失效甚至任务中断。因此,有必要建立完备的故障检测方案,及时发现故障并进行修正,以提高复杂任务可靠性。传统故障检测方法依赖于先验知识或模型,目前已实现较好应用,但在应对复杂系统和多源、高维数据等情况时,基于智能算法建立的故障检测技术优势凸显。首先,结合深海环境特点和潜航器的导航方案,对传统方法和和基于智能算法的检测方法进行介绍;然后,基于案例对不同检测方法的特点及在水下环境中的应用进行分析,并对故障检测方法的研究进展进行总结;最后,讨论了未来深海潜航器组合导航系统故障检测方法研究方向。 With the development of marine science construction,the application of submersibles is developing towards deep-sea,multi-functional,long-range,and ultra-high speed directions.Integrated navigation systems are widely used in deep-sea navigation due to their high reliability and good real-time performance.With the increasing scale of submersibles and the complexity of mission environments,the failure rate of navigation systems is also increasing.Once a failure occurs,it will lead to system failure or even mission interruption.Therefore,it is necessary to establish a comprehensive fault detection scheme,timely detect faults and make corrections to improve the reliability of complex tasks.Traditional fault detection methods rely on prior knowledge or models and have been widely applied.However,when dealing with complex systems,multi-source and high-dimensional data,fault detection techniques based on intelligent algorithms are showing their advantages.Firstly,based on the characteristics of deep-sea environment and the navigation scheme of underwater vehicles,the traditional methods and the detection methods based on intelligent algorithms are introduced.Then,the characteristics of different detection methods and their applications in underwater environments are analyzed based on case studies,and the research progress of fault detection methods is summarized.Finally,the research direction of fault detection methods for future deep-sea submersible integrated navigation systems is discussed.
作者 韩若曦 李海兵 郭子伟 HAN Ruoxi;LI Haibing;GUO Ziwei(Laoshan National Laboratory,Qingdao 266237;Beijing Institute of Aerospace Control Devices,Beijing 100039)
出处 《导航与控制》 2023年第6期1-12,共12页 Navigation and Control
基金 科技部重点研发计划(编号:2022YFC3103401,2021YFC3100904) 军科委173基金(编号:2022-JCJQ-JJ-0569) 国家自然科学基金(编号:41976182)
关键词 深海潜航器 故障检测 智能算法 组合导航 deep-sea submersible fault detection intelligent algorithm integrated navigation
  • 相关文献

参考文献9

二级参考文献83

  • 1颜东,张洪钺.INS/GPS组合导航系统故障检测问题研究[J].航空学报,1996,17(2):239-247. 被引量:8
  • 2杨奎河,单甘霖,赵玲玲.基于最小二乘支持向量机的汽轮机故障诊断[J].控制与决策,2007,22(7):778-782. 被引量:25
  • 3Niederlinski A.A heuristic approach to the design of interacting multi-variable systems[J].Automatica,1971,7(6):691-701.
  • 4Morita H,Hild M,Miura J.Panoramic view-based navigation in outdoor environments based on support vector learning[C]//Intelligent Robots and Systems.IEEE Press,US,2006:2304-2307.
  • 5Liang Yulan,Reyes M L,Lee J D.Real-time detection of driver cognitive distraction using support vector machines[J].IEEE Transactions on Intelligent Transportation Systems,2007,8(2):340-350.
  • 6Sun li-hong,Shen Ji-hong.Prediction of ship pitching based on support vector machines[C]//Computer Engineering and Technology.IEEE Press,US,2009:379-382.
  • 7Martens D,Baesens B,Gestel T V,et al.Decompositional rule extraction from support vector machines by active learning[J].IEEE Transactions on Knowledge and Data Engineering,2009,21(2):178-191.
  • 8臧荣春,崔平远.基于神经网络的假设检验故障诊断算法研究[J].系统仿真学报,2007,19(16):3852-3855. 被引量:7
  • 9Sewook P,Jonghee B,Youdan K,Sungwan K.Faulttolerant flight control system for the tilt-rotor UAV[J].Journal of the Franklin Institute,2013:1-25.
  • 10Kim H S,Kim Y,Seah C E.A survey of fault detection,isolation,and reconfiguration method[J].IEEE Transactionson Control Systems Technology,2010,18(3):636-653.

共引文献199

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部