期刊文献+

Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting 被引量:6

原文传递
导出
摘要 Selective laser melting(SLM)has the advantage in preparing supersaturated solid solutions due to its unique thermal field and high solidification rate.In this study,a face-centered cubic single-phase FeCrNi medium entropy alloy(MEA)with an ultrahigh Cr content(~35 at.%)was additively manufactured by SLM.The as-built MEA shows a hierarchical microstructure of coarse columnar grains and submicron dislocation cell structures,where the cell boundaries are probed segregated with Cr and C and decorated with nano carbides.The appearance of these dislocation barriers results in an excellent combination of strength(σ_(0.2)=745 MPa,σ_(UTS)=1007 MPa)and ductility(ε_(f)=31%).The current MEA also shows a superb corrosion resistance with a corrosion current density of 0.06μA cm^(−2) in 3.5 wt.%NaCl solution,which is far lower than that of 316 L.The high content of solutioned Cr in the MEA ensures sufficient Cr supply to form an integrated Cr_(2)O_(3) passive film,and the large number of cell boundaries acting as the diffusion channels lead to the fast formation of a stable passive film over the alloy surface.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第4期207-214,共8页 材料科学技术(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.52020105013 and 51771232) the National Key Research and Development Plan of China(No.2016YFB0700302)
  • 相关文献

同被引文献41

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部