期刊文献+

Mesoscale deformation mechanisms in relation with slip and grain boundary sliding in TA15 titanium alloy during tensile deformation 被引量:7

原文传递
导出
摘要 Revealing the mesoscale deformation mechanisms of titanium alloy with tri-modal microstructure is of great significance to improve its mechanical properties. In this work, the collective behavior and mechanisms of slip activities, slip transfer, and grain boundary sliding of tri-modal microstructure were investigated by the combination of quasi-in-situ tensile test, SEM, EBSD and quantitative slip trace analyses. It is found that the slip behavior presents different characteristics in the equiaxed α(α_(p)) and lamellar α(α_(l))grains. Under a low level of deformation, almost all the slip deformation is governed by single basal and prismatic slips for both of α_(p)and α_(l),despite small amount of < a >-pyramidal slip exists in α_(l)grains. As deformation proceeds, < a >-pyramidal and < c + a >-pyramidal slip systems with high Schmid factors were activated in quantities. Specially, certain coarse prismatic slip bands were produced across both of single and colony α_(l)grains whose major axes tilting about 40 °–70 ° from the tensile axis. Slip transfer occurs at the boundaries of α_(p)/α_(p)and α_(l)/β under the condition that there exists perfect alignment between two slip systems and high Schmid factors of outgoing slip system. The slip transfer across α_(l)/β boundary can be divided into two types: straight slip transfer and deflect slip transfer with a deviation angle of 5 °–12 °, depending on the alignment of slip planes of two slip systems. The grain boundary sliding along boundaries of α_(l)/β and α_(p)/β was captured by covering micro-grid on tensile sample. It is found that the crystallographic orientation and the geometrical orientation related to loading axis play great roles in the occurrence of grain boundary sliding.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第3期72-86,共15页 材料科学技术(英文版)
基金 the support of the National Natural Science Foundation of China(No.51875467,92060107) the National Science Fund for Distinguished Young Scholars of China(No.51625505) the National Key R&D Program of China(No.2020YFA0711100) Young Elite Scientists Sponsorship Program and the General Program of Science Technology Development Project of Beijing Municipal Education Commission(No.KM202010005008)
  • 相关文献

同被引文献72

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部