期刊文献+

Data-driven parametric soliton-rogon state transitions for nonlinear wave equations using deep learning with Fourier neural operator

原文传递
导出
摘要 In this paper,we develop the deep learning-based Fourier neural operator(FNO)approach to find parametric mappings,which are used to approximately display abundant wave structures in the nonlinear Schr?dinger(NLS)equation,Hirota equation,and NLS equation with the generalized PT-symmetric Scarf-II potentials.Specifically,we analyze the state transitions of different types of solitons(e.g.bright solitons,breathers,peakons,rogons,and periodic waves)appearing in these complex nonlinear wave equations.By checking the absolute errors between the predicted solutions and exact solutions,we can find that the FNO with the Ge Lu activation function can perform well in all cases even though these solution parameters have strong influences on the wave structures.Moreover,we find that the approximation errors via the physics-informed neural networks(PINNs)are similar in magnitude to those of the FNO.However,the FNO can learn the entire family of solutions under a given distribution every time,while the PINNs can only learn some specific solution each time.The results obtained in this paper will be useful for exploring physical mechanisms of soliton excitations in nonlinear wave equations and applying the FNO in other nonlinear wave equations.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第2期5-17,共13页 理论物理通讯(英文版)
基金 the NSFC under Grant Nos.11925108 and 11731014 the NSFC under Grant No.11975306
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部