期刊文献+

融合注意力与词边界的防震减灾实体识别方法

An earthquake disaster mitigation entity recognition method that integrates attention and word boundary
原文传递
导出
摘要 针对防震减灾命名实体识别任务中存在的特征信息不足且识别效率低的问题,提出了一种“融合自注意力与MarkBERT”的防震减灾领域实体识别模型。该模型在预训练过程中引入MarkBERT:(1)得到含有词边界信息的序列;(2)利用BiLSTM获取字符位置信息;(3)引入自注意力机制进一步捕获序列内部关系并分配特征权重;(4)通过条件随机场输出最优序列标注结果。本模型基于“地震防治相关问句BIO标注数据”进行了实验,结果显示F_(1)值达到了96.18%,并与3组同类模型进行对比,验证了算法的优越性。实验结果表明,该模型能高效准确的识别文本中的防震减灾实体。 In response to the problem of insufficient feature information and low recognition efficiency in the task of naming entities for earthquake prevention and disaster reduction,this study proposes a method for entity recognition in the field of earthquake prevention and disaster reduction that integrates Self-Attention and MarkBERT.Using MarkBERT to introduce word boundary information during the pre-training process,a sequence containing boundary information is obtained;Obtain character position information through BiLSTM;Introducing a Self-Attention mechanism to further capture the internal relationships of sequences and allocate feature weights;Finally,the optimal sequence annotation result is output through conditional random fields.This model was tested based on the“BIO annotation data of earthquake prevention and control related questions”,and the F_(1)value reached 96.18%.And the superiority of the algorithm was verified by comparing three sets of similar models.The experimental results show that the model can efficiently and accurately identify earthquake prevention and disaster reduction entities in text.
作者 徐婧 刘纪平 王亮 王岩 XU Jing;LIU Jiping;WANG Liang;WANG Yan(Faculty of Geomatics,Lanzhou Jiaotong University,Lanzhou 730070,China;Chinese Academy of Surveying and Mapping,Beijing 100036,China;National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring,Lanzhou 730070,China;Gansu Provincial Engineering Laboratory for National Geographic State Monitoring,Lanzhou 730070,China;School of Geomatics,Liaoning Technical University,Fuxin,Liaoning 123000,China)
出处 《测绘科学》 CSCD 北大核心 2024年第1期216-224,共9页 Science of Surveying and Mapping
基金 国家重点研发计划项目(2022YFC3003604)
关键词 命名实体识别 自然语言处理 防震减灾 MarkBERT 自注意力机制 长短记忆网络 条件随机场 named entity recognition natural language processing earthquake prevention and disaster reduction MarkBERT sel-attention mechanism BiLSTM CRF
  • 相关文献

参考文献5

二级参考文献47

  • 1刘新亮,张梦琪,谷情,任延昭,何东彬,高万林.基于BERT-CRF模型的生鲜蛋供应链命名实体识别[J].农业机械学报,2021,52(S01):519-525. 被引量:12
  • 2顾朝林,张敏.长江三角洲都市连绵区性状特征与形成机制研究[J].地球科学进展,2001,16(3):332-338. 被引量:40
  • 3中国地震局震害防御司.中国近代地震目录[M].北京:中国科学技术出版社,1999..
  • 4国家地震局地球物理研究所 复旦大学中国历史地理研究所.明时期中国历史地震图集[M].北京:地图出版社,1986.129,130.
  • 5刘恢先主编.唐山大地震震害(一)[M].北京:地震出版社,1985.124-132.
  • 6中国地震局 胡聿贤主编.中国地震动参数区划图(GBl8306-2001)宣传教材[M].北京:中国标准出版社,2001.92—98.
  • 7Lefever C., 1998, Metropolitan government and governance in west countries-A critical review. International Journal of Urban and Regional Research,22,9 ~ 23.
  • 8Wang Suyun, Gao Ajia and Yan Xiujie, 2000, Development of Attenuation Relations for Ground Motion in China. Journal of Earthquake Prediction Research,8( 1 ) ,32 ~ 40.
  • 9朱彦东,吴兵,汪海渊.城市群综合交通系统战略规划研究[J].现代城市研究,2001,16(4):44-47. 被引量:9
  • 10郭嵘.城市化发展的若干问题研究[J].哈尔滨建筑大学学报,2001,34(6):109-112. 被引量:4

共引文献161

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部