期刊文献+

高分辨率遥感影像飞机目标的双阶段检测方法 被引量:3

Two-stage aircraft detection for high-resolution remote sensing image
原文传递
导出
摘要 针对现有方法进行真实应用场景中大批量的遥感影像进行特定目标检测时耗时且困难的问题,该文根据由粗到精的思路提出了一种遥感影像飞机目标的双阶段检测框架。首先,对预训练模型进行迁移训练,在下采样影像中利用机场检测模型搜索机场区域,实现对目标区域的锁定。然后,对机场场景,利用第二次迁移的模型进行飞机目标检测。结果表明,所提方法可以提高遥感影像检测飞机目标的效率和精度。通过不同阶段的筛选可以去除大部分无效区域,有效避免了在非机场区域产生的误检,提高了准确率。 Aiming at the problem of time-consuming and difficult detection of specific targets in large batches of remote sensing images in real application scenarios by existing methods, this paper proposed a two-stage detection framework for aircraft targets in remote sensing images based on the idea of rough to precise. Firstly, transform and train the pre-trained model, and use the airport detection model to search for the airport area in the down-sampled image to achieve the lock on the target area. Then, for the airport scene, the second transferred model was used for aircraft object detection. The results showed that the proposed method could improve the efficiency and accuracy of remote sensing image detection of aircraft targets. Through different stages of screening, most of the invalid areas could be removed, which effectively avoided false detection in non-airport areas and improved the accuracy.
作者 刘思婷 王庆栋 张力 韩晓霞 王保前 LIU Siting;WANG Qingdong;ZHANG Li;HAN Xiaoxia;WANG Baoqian(Faculty of Geomatics,Lanzhou Jiaotong University,Lanzhou 730070,China;Chinese Academy of Surveying and Mapping,Beijing 100036,China)
出处 《测绘科学》 CSCD 北大核心 2022年第6期109-118,共10页 Science of Surveying and Mapping
基金 国家重点研发计划项目(2019YFB1405600)
关键词 机场检测 飞机目标检测 双阶段检测 迁移学习 airport detection aircraft target detection two-stage detection transfer learning
  • 相关文献

参考文献9

二级参考文献47

  • 1Itti L,Koch C,Niebur E.A model of saliency-based visual attention for rapid scene analysis[].IEEE Transactions on Pattern Analysis and Machine Intelligence.1998
  • 2Chao Tao,Yihua Tan,Huajie Cai,Jinwen Tian.Airport Detection From Large IKONOS Images Using Clustered SIFT Keypoints and Region Information. Geoscience and Remote Sensing Letters, IEEE . 2011
  • 3Li, Zhicheng,Itti, Laurent.Saliency and gist features for target detection in satellite images. IEEE Transactions on Image Processing . 2011
  • 4Guo C L,Ma Q,Zhang L M.Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition . 2008
  • 5Rafael Grompone von Gioi,Jeremie Jakubowicz,Jean-Michel Morel.LSD: A Fast Line Segment Detector with a False Detection Control. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2010
  • 6Hou X D,Zhang L Q.Saliency detection:a spectral residualapproach. Proceedings of IEEE Conference on ComputerVision and Pattern Recognition . 2007
  • 7Wang W,Liu L,Hu C B,et al.Airport detection in SARimage based on perceptual organization. Proceedingsof ofInternational Workshop on Multi-Platform/Multi-sensorRemote Sensing and Mapping . 2011
  • 8QU Yanyun,LI Cuihua,ZHENG Nanning.Airport detection base on support vector machine from a single image. 2005 Fifth International Conference on Information Communications and Signal Processing . 2005
  • 9ACHANTA R,HEMAMI S,ESTRADA F, et al.Frequency-tuned salient region detection. IEEE Conference on Computer Vision and Pattern Recognition . 2009
  • 10Harel, J.,Koch, C.,Perona, P.Graph-based Visual Saliency. Advances in Neural Information Processing Systems . 2007

共引文献164

同被引文献14

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部