摘要
针对极化合成孔径雷达(PolSAR)影像地物分类特征表征性弱,以及传统全卷积网络(FCN)分类精度较低、效果差的问题,该文提出了一种结合FCN和多特征的全极化SAR土地覆盖分类算法。首先,根据PolSAR影像和极化目标分解获取散射特征参数构建特征空间,利用主成分分析(PCA)对特征空间实现降维,以优化特征组合;接着,以SegNet建模思想为基础,在网络中层嵌入多层多尺度非对称卷积单元(MACU)结构,并在中层添加代价函数构建双代价收敛(DC)结构,基于此设计了DC-MA-FCN网络;然后,以优化后的特征组合为输入,通过DC-MA-FCN网络进行多层自主学习训练网络,并利用训练好的网络进行PolSAR影像初始分类;最后,组合DC-MA-FCN网络分类结果和形态学方法实现最终分类。该方法对两地区的PolSAR影像进行取样和试验,并使用多种评价指标定量分析,表明了算法的可行性和有效性。
Aiming at the problem that the object classification in polarimetric synthetic aperture radar(PolSAR)images is week in feature representation and the traditional fully convolution network(FCN)has low accuracy and poor effect on classification,a land cover classification of fully polarimetric SAR with FCN and multi-feature algorithm was proposed.Firstly,the feature space was constructed based on the PolSAR image and target decomposition to obtain the scattering feature parameters,and the feature space was reduced by principal component analysis(PCA)to optimize the feature combination.Then,based on the SegNet network modeling idea,the multi-scale asymmetric convolution unit structure and cost function were embedded in the network layer to design the DC-MA-FCN network.Using the DC-MA-FCN learn the multi-level feature autonomously of optimized feature combination,the initial classification results were obtained.Finally,the DC-MA-FCN network classification results and morphological methods were combined to achieve final classification.The method sampled and tested PolSAR images from two regions,and used a variety of evaluation indicators to quantitatively analyze,which showed the feasibility and effectiveness of the algorithm.
作者
谢凯浪
赵泉华
李玉
XIE Kailang;ZHAO Quanhua;LI Yu(Institute for Remote Sensing Science and Application,School of Geomatics,Liaoning Technical University,Fuxin,Liaoning 123000,China)
出处
《测绘科学》
CSCD
北大核心
2020年第1期77-83,98,共8页
Science of Surveying and Mapping
基金
国家自然科学基金青年科学基金项目(41301479)
辽宁省高校创新人才支持计划项目(LR2016061)
辽宁省教育厅科学技术研究一般项目(LJCL009).
关键词
极化SAR
全卷积网络
多尺度非对称卷积单元
代价函数
polarimetric synthetic aperture radar
fully convolution network
multi-scale asymmetric convolution unit
cost function