期刊文献+

结合FCN和多特征的全极化SAR土地覆盖分类 被引量:4

Land cover classification of fully polarimetric synthetic aperture radar with fully convolution network and multi-feature
原文传递
导出
摘要 针对极化合成孔径雷达(PolSAR)影像地物分类特征表征性弱,以及传统全卷积网络(FCN)分类精度较低、效果差的问题,该文提出了一种结合FCN和多特征的全极化SAR土地覆盖分类算法。首先,根据PolSAR影像和极化目标分解获取散射特征参数构建特征空间,利用主成分分析(PCA)对特征空间实现降维,以优化特征组合;接着,以SegNet建模思想为基础,在网络中层嵌入多层多尺度非对称卷积单元(MACU)结构,并在中层添加代价函数构建双代价收敛(DC)结构,基于此设计了DC-MA-FCN网络;然后,以优化后的特征组合为输入,通过DC-MA-FCN网络进行多层自主学习训练网络,并利用训练好的网络进行PolSAR影像初始分类;最后,组合DC-MA-FCN网络分类结果和形态学方法实现最终分类。该方法对两地区的PolSAR影像进行取样和试验,并使用多种评价指标定量分析,表明了算法的可行性和有效性。 Aiming at the problem that the object classification in polarimetric synthetic aperture radar(PolSAR)images is week in feature representation and the traditional fully convolution network(FCN)has low accuracy and poor effect on classification,a land cover classification of fully polarimetric SAR with FCN and multi-feature algorithm was proposed.Firstly,the feature space was constructed based on the PolSAR image and target decomposition to obtain the scattering feature parameters,and the feature space was reduced by principal component analysis(PCA)to optimize the feature combination.Then,based on the SegNet network modeling idea,the multi-scale asymmetric convolution unit structure and cost function were embedded in the network layer to design the DC-MA-FCN network.Using the DC-MA-FCN learn the multi-level feature autonomously of optimized feature combination,the initial classification results were obtained.Finally,the DC-MA-FCN network classification results and morphological methods were combined to achieve final classification.The method sampled and tested PolSAR images from two regions,and used a variety of evaluation indicators to quantitatively analyze,which showed the feasibility and effectiveness of the algorithm.
作者 谢凯浪 赵泉华 李玉 XIE Kailang;ZHAO Quanhua;LI Yu(Institute for Remote Sensing Science and Application,School of Geomatics,Liaoning Technical University,Fuxin,Liaoning 123000,China)
出处 《测绘科学》 CSCD 北大核心 2020年第1期77-83,98,共8页 Science of Surveying and Mapping
基金 国家自然科学基金青年科学基金项目(41301479) 辽宁省高校创新人才支持计划项目(LR2016061) 辽宁省教育厅科学技术研究一般项目(LJCL009).
关键词 极化SAR 全卷积网络 多尺度非对称卷积单元 代价函数 polarimetric synthetic aperture radar fully convolution network multi-scale asymmetric convolution unit cost function
  • 相关文献

参考文献3

二级参考文献33

  • 1祁亨年.支持向量机及其应用研究综述[J].计算机工程,2004,30(10):6-9. 被引量:186
  • 2高明星,杨健,彭应宁.极化雷达遥感中目标特征提取[J].电波科学学报,2004,19(4):418-421. 被引量:4
  • 3Huynen J R.Phenomenological Theory of Radar Targets[D].Netherlands:Technical University of Delft,l970.
  • 4Cloude S R,Pottier E.A Review of Target Decomposition Theorems in Radar Polarimetry[J].IEEE Transaction on Geoscience and Remote Sensing,1996,34(2):498-518.
  • 5Krogager E.New Decomposition of the Radar Target Scattering Matrix[J].Electronics Letters,1990,26(18):1525-1527.
  • 6Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag.1995.
  • 7Vapnik V N.An Overview of Statistical Learning Theory[J].IEEE Transactions on Neural Networks,1999,10(5):988-999.
  • 8LEE J S, POTTIER E. Polarimetric Radar Imaging: from Basics to Applications [ M ]. Boca Raton: CRC Press, 2009.
  • 9FORMONT P, PASCAL F, VASILE G, et al. Statistical Classification for Heterogeneous Polarimetric SAR Images [J]. IEEE Selected Topics in Signal Processing, 2011, 5 (3): 567-576.
  • 10HOEKMAN D H, VISSERS M A M, TRAN T N. Unsu- pervised Full Polarimetric SAR Data Segmentation as a Tool for Classification of Agricultural Areas [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(2):402-411.

共引文献157

同被引文献21

引证文献4

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部