摘要
探讨和验证机器学习技术在海上风电设备腐蚀分析中的实际应用潜力。鉴于海上风电设备在恶劣环境下经常面临的腐蚀问题,利用先进的数据分析技术提高对腐蚀过程的理解,从而促进风电设备维护策略的优化。通过机器学习技术分析大量的环境和腐蚀数据,研究着重于评估各种机器学习模型在预测腐蚀行为方面的准确性和可靠性。研究结果表明,机器学习模型在预测和分析海上风电设备的腐蚀方面表现出较高的精确度和可靠性,特别是在提高预测结果的透明度和可解释性方面取得了显著进展。研究表明,机器学习技术在海上风电设备腐蚀分析中具有重要的实际应用潜力。
The practical application potential of machine learning technology in the corrosion analysis of offshore wind turbine equipment is explored and verified.Given the frequent corrosion issues faced by offshore wind turbine equipment in harsh environments,the use of advanced data analysis techniques aims to enhance understanding of the corrosion process,thereby promoting the optimization of maintenance strategies for wind turbine equipment.By analyzing a large volume of environmental and corrosion data through machine learning technology,the study focuses on evaluating the accuracy and reliability of various machine learning models in predicting corrosion behavior.The findings indicate that machine learning models demonstrate high precision and reliability in predicting and analyzing the corrosion of offshore wind turbine equipment,especially making significant progress in improving the transparency and interpretability of prediction results.The study shows that machine learning technology has significant practical application potential in the corrosion analysis of offshore wind turbine equipment.
作者
纪云松
刘海南
敖立争
余明敏
李沛佳
JI Yunsong;LIU Hainan;AO Lizheng;YU Mingmin;LI Peijia(Guangdong Huadian Fuxin Yangjiang Offshore Wind Power Co.,Ltd.,Yangjiang 202402,Guangdong,China)
出处
《船舶工程》
CSCD
北大核心
2024年第S01期133-140,共8页
Ship Engineering
关键词
海上风电
大气腐蚀
大气腐蚀监测
机器学习
offshore wind power
atmospheric corrosion
atmospheric corrosion monitoring
machine learning