期刊文献+

基于HHO-KELM的客滚船车辆舱风道压降预测

Air Duct Pressure Drop Prediction of Passenger Ro-Ro Vehicle Based on HHO-KELM
下载PDF
导出
摘要 为了在客滚船车辆舱通风系统设计初期准确预测风道压降,避免出现严重的通风能量损失,针对车辆舱连续变截面风道评估问题,提出一种基于哈里斯鹰优化核极限学习机的风道压降预测方法。从风道压降的影响因素入手建立变截面风道模型,对其进行参数化仿真获取数据集,建立风道压降预测模型进行车辆舱风道压降预测。结果表明:基于哈里斯鹰优化核极限学习机的风道压降预测模型的决定系数为0.998,平均误差为0.414 Pa,能准确预测风道的压降。 In order to accurately predict the air duct pressure drop in the early stage of the design of the ro-ro vehicle cabin ventilation system and avoid serious ventilation energy loss,a wind duct pressure drop prediction method based on Harris Eagle Optimized Nuclear Limit Xi is proposed for the evaluation of the continuous variable section air duct of the vehicle compartment.Starting from the influencing factors of air duct pressure drop,a variable cross-section air duct model is established,a data set was obtained by parametric simulation,and an air duct pressure drop prediction model is established to predict the air duct pressure drop in the vehicle compartment.The results show that the coefficient of determination of the air duct pressure drop prediction model based on Harris Eagle Optimized Nuclear Limit Xi Machine is 0.998 and the average error is 0.414 Pa,which can accurately predict the pressure drop of the air duct.
作者 杨家豪 李磊 YANG Jiahao;LI Lei(School of Mechanical Engineering,Jiangsu University of Science and Technology,Zhenjiang 212100,Jiangsu,China)
出处 《船舶工程》 CSCD 北大核心 2023年第10期64-68,109,共6页 Ship Engineering
基金 工信部高技术船舶项目(CJ07N20) 广东省资源厅重点项目([2021]No.24)。
关键词 客滚船 车辆舱风道 压降预测 极限学习机 哈里斯鹰算法 passenger Ro-Ro ship vehicle cabin air duct pressure drop prediction extreme learning machine Harris eagle algorithm
  • 相关文献

参考文献2

二级参考文献7

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部