摘要
目的:基于可穿戴式脉象设备采集的脉搏波,探究不同方法对相同脉搏波分类的影响及分类结果的一致性。方法:对通过可穿戴式手环采集的脉搏信号进行了脉象特征提取与识别。首先对采集的脉搏波进行小波滤波去除噪声干扰,并归一化处理;然后分别使用基于时域特征的参数值法和基于欧氏距离的相似度法对脉搏信号进行分类;最后,采用Kappa检验对两种方法结果的一致性进行分析。结果:基于时域特征值参数法可以根据经验参数将脉搏信号进行程度等级区分,基于欧氏距离的相似度法可以通过测量脉搏波与标准脉搏波之间的相似度差异实现脉搏信号分类。两种脉象分类方法对脉搏波分类结果的Kappa值为0.42,表明分类结果一致性为中等。结论:结合不同的方法对脉搏信号进行识别将更有利于脉象客观分类的准确性。
Objective:To investigate the effects of different methods on the classification of the same pulse wave and the consistency of the classification results based on the pulse wave collected by the wearable pulse device.Methods:This paper extracted and identified the pulse characteristics of the pulse signal collected by the wearable bracelet.Firstly,the acquired pulse wave was wavelet filtered to remove noise interference and normalized.Then the pulse value signal was classified by the parameter value method based on time domain feature and the similarity method based on Euclidean distance.Finally,Kappa test was used.The consistency of the results of the two methods was analyzed.Results:Based on the time domain eigenvalue parameter method,the pulse signal could be graded according to the empirical parameters.The similarity method based on Euclidean distance can realize the classification of pulse signals by comparing the difference between the pulse waveform and the standard pulse waveform.The Kappa value of pulse wave classification results of the two pulse classification methods was 0.42,indicating that the consistency was moderate.Conclusion:Combining different methods to identify the pulse signal will be more conducive to the accuracy of objective classification of the pulse.
作者
叶青
刘莉君
陈镇香
查青林
刘端勇
余瑛
YE Qing;LIU Li-jun;CHEN Zhen-xiang;ZHA Qing-lin;LIU Duan-yong;YU Ying(Jiangxi University of Traditional Chinese Medicine,Nanchang 330004,China)
出处
《中华中医药杂志》
CAS
CSCD
北大核心
2019年第12期5950-5953,共4页
China Journal of Traditional Chinese Medicine and Pharmacy
基金
江西省教育厅科学技术研究项目(No.170726)
江西中医药大学校级课题(No.2014jzzdxk021,No.2014jzyb-3,No.2016jzgy-06,No.31000302).
关键词
小波滤波
时域分析
波形拟合
欧氏距离
Kappa分析
脉象特征
脉搏波
可穿戴式手环
Wavelets filtering
Time domain analysis
Waveform fitting
Euclidean distance
Kappa analysis
Pulse charcteristics
Pulse wave
Wearable bracelet