期刊文献+

宇宙模型的简并与分立

Degeneracy and discreteness in cosmological model fitting
下载PDF
导出
摘要 探讨了宇宙学模型的简并与分立,改进了区分度因子的定义;利用马尔可夫链-蒙特卡罗(MC-MC)方法对2组哈勃常数的观测数据进行了拟合;检查了改进后的区分度因子对模型拟合的影响.结果显示:CC哈勃常数数据集的区分度因子普遍小于BAO哈勃常数数据集,且CC数据集的置信区间大于BAO数据集,说明区分度因子的确能够反映出数据点对宇宙学模型的区分度;BAO+CC合并数据集的置信区间小于2个原始的数据集,说明使用区分度因子比较数据集的区分能力时,所用数据集的数据点个数不能相差过大. Degeneracy and discreteness of standard cosmological model is studied to improve definition of discreteness factor G.Two sets of observational data are applied to the MC-MC method to complete fitting of cosmological parameters,to test influence of modified factor G.The modified G factors of CC data set are generally smaller than BAO data set,confidence interval of CC data set is larger than BAO data set.This indicates that modified G BAO+CC combined data set is less than two original data sets.This indicates that when using modified G factors to compare distinguishing ability of two data sets,the number of data points in the two data sets should be almost the same.
作者 肖子岚 陈昭莹 张舒仪 张同杰 XIAO Zilan;CHEN Zhaoying;ZHANG Shuyi;ZHANG Tongjie(Faculty of Arts and Sciences,Beijing Normal University,519000,Zhuhai,Guangdong,China;Department of Astronomy,Beijing Normal University,100875,Beijing,China)
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第3期362-369,共8页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(11929301)
关键词 宇宙学 标准宇宙学模型 哈勃常数 简并与分立 区分度因子 Cosmology standard cosmological model Hubble parameter degeneracy and discreteness discreteness factor
  • 相关文献

参考文献4

二级参考文献90

  • 1Hubble E P. A relation between distance and radial velocity among extra--galactic nebulae[J]. Proc Natl Acad Sci, 15:168.
  • 2Zhang T J, Ma C. Constraints on the dark side of the universe and observational hubble parameter data [J]. Advances in Astronomy, 2010 : 81.
  • 3Jimenez R, Verde L, Treu T, et al. Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the cosmic microwave background [J]. Astrophys J, 2003,593:622.
  • 4Simon J, Verde L, Jimenez R. Constraints on the redshift dependence of the dark energy potential[J]. Phys Rev D, 2005,71:123001.
  • 5Stern D, Jimenez R, Verde L, et al. Cosmic chronometers: constraining the equation of state of dark energy. I: H(z) measurements[J]. J Cosmol Astropart Phys, 2010(2) :8.
  • 6Gaztafiaga E, Cabrre A, Hui L. Clustering of luminous red galaxies IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z)[J]. Mon NotR Astron Soc, 2009,399:1663.
  • 7Antony L, Sarah B. Cosmological parameters from CMB and other data: a Monte Carlo approach[J]. Phys Rev D, 2002, 66:103511.
  • 8Xu Lixin, Lu Jianbo. Cosmological constraints on generalized chaplygin gas model.. Markov chain Monte Carlo approach[J]. Journal of Cosmology and Astro- Particle Physics, 2010(03) :25.
  • 9ReidBeth A, Percival. Cosmological constraints from the clustering of the sloan digital sky survey DR7 luminous red galaxies[J]. Monthly Notices of the Royal Astronomical Society, 2010,404 : 60.
  • 10Liddle, Andrew R. Statistical methods for cosmological parameter selection and estimation[J]. Annual Review of Nuclear and Particle Science, 2009,59:95.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部