期刊文献+

一种数据驱动的三维流场流线特征化筛选方法 被引量:2

A Data Driven Characteristically Filtering Method for 3D Flow Field
原文传递
导出
摘要 传统的流线可视化方法因视线遮挡和数据密集难以刻画流场特征,难以应对大规模数据,为此,从数据驱动的思路出发,提出了一种筛选三维流线的算法,实现对大规模精细流场的特征刻画.该算法对广泛撒点取得的流线集进行特征化,通过计算流线上各点的特征,并以此为依据对流线进行分段;基于所有分段的几何特征构建一组特征向量,并利用词袋方法建立一组词向量;以词向量为基础计算流线间的几何特征相似度,以评估各个流线间的相似性,实现对流线的筛选.通过在特定流线的查询和整体流线流场的压缩这2个典型应用场景上的应用,检验了该方法对流线筛选的效果. With the wide application of fluid mechanics,more and more large-scale fine flow fields have emerged.Overlapping streamlines and dense fields make it hard to use the traditional streamline visualization methods to characterizes the flow fields or process with large-scale fine flow fields.Based on the idea of data-driven,this paper presents an algorithm to implement the characterization of large-scale fine flow fields.The algorithm characterizes streamlines obtained by widely spreading seed points,calculates the features of each point,segments the streamlines based on the features,and then constructs a set of feature vectors and a set of word vectors.Then,the algorithm calculates the geometric feature similarity between streamlines to evaluate streamline similarity and achieves streamlines filtering.Two typical application scenarios,streamline query and flow field compression,verify the proposed method.
作者 熊光正 黄智濒 戴志涛 杨武兵 XIONG Guang-zheng;HUANG Zhi-bin;DAI Zhi-tao;YANG Wu-bing(Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia,Beijing 100876,China;China Academy of Aerospace Aerodynamics,Beijing 100074,China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2019年第6期91-97,共7页 Journal of Beijing University of Posts and Telecommunications
基金 2019年中央基本业务费项目(RC201958).
关键词 数据驱动 流线分段 流场可视化 词袋 大规模精细流场 data driven streamline segmentation flow field visualization bag-of-word large-scale fine flow field
  • 相关文献

参考文献2

二级参考文献13

  • 1王少荣,吴迪,汪国平.一种流线放置方法[J].软件学报,2012,23(Suppl. (2)):42 -52.
  • 2Chen Y, Cohen J D, Krolik J H. Similarity-guided streamline placement with error evaluation [J]. IEEE Transactions on Visualization and Computer Graphics (S1077-2626), 2007, 13(6): 1448-1455.
  • 3Turk G, Banks D. Image-guided streamline placement [C]// Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, ACM (S0097-8930). USA: ACM, 1996: 453-460.
  • 4Jobard B, Lefer W. Creating evenly-spaced streamlines of arbitrary density [M]// Visualization in Scientific Computing'97 (S0946-2767) Austria: Springer Vienna, 1997: 43-55.
  • 5Li L, Shen H W. Image-based streamline generation and rendering [J]. IEEE Transactions on Visualization and Computer Graphics, (S 1077-2626), 2007, 13(3): 630-640.
  • 6Mebarki A, Alliez P, Devillers O. Farthest point seeding for efficient placement of streamlines [C]// Visua/ization, 2005, VIS 05, IEEE (S0249-6399). USA: 1EEE, 2005: 479-486.
  • 7Verma V, Kao D, Pang A. A flow-guided streamline seeding strategy [C]// Proceedings of the conference on Visualization'O0 (S1070-2385). USA: IEEE Computer Society Press, 2000: 163-170.
  • 8Li L, Hsieh H H, Shen H W. Illustrative streamline placement and visualization [C]// Visualization Symposium, 2008, PacificVIS'08. IEEE Pacific ($2165-8765). USA: IEEE, 2008: 79-86.
  • 9Zhang W, Wang , Zhan J, et al. Parallel Streamline Placement for 2D Flow Fields [J]. IEEE Transactions on Visualization and Computer Graphics (S1077-2626), 2013, 19(7): 1185-1198.
  • 10李振海,罗志才,汪海洪,李琼.利用改进FLIC算法进行重力矢量场可视化[J].武汉大学学报(信息科学版),2011,36(3):276-279. 被引量:2

共引文献5

同被引文献20

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部