期刊文献+

GSM-MBM系统中基于松弛迭代的低复杂度检测算法

A Low-Complexity Detection Algorithm Based on Relaxation Iteration Method for GSM-MBM Systems
原文传递
导出
摘要 针对基于媒介调制的广义空间调制(GSM-MBM)系统接收端最大似然(ML)检测算法计算复杂度高且随激活天线数呈指数递增的问题,提出一种基于能量排序下的松弛迭代思想的低复杂度检测算法(EO-RIM).该算法对所有可能的发射天线组合及相应镜像激活模式组合下的信号能量总值进行排序,再通过松弛迭代算法依次检测相应的调制信号,并通过预设阈值来协调误码率(BER)性能和计算复杂度之间的关系.仿真结果表明,在GSMMBM系统中,EO-RIM算法的BER性能逼近ML检测算法,与基于有序块的最小均方误差(OB-MMSE)检测算法几乎一致,而EO-RIM的计算复杂度随激活天线数呈平方递增而非指数递增,相比OB-MMSE算法降低了一个数量级. The complexity of the maximum likelihood(ML)detector of the generalized spatial modulation-media based modulation system is very high and exponentially grows with the number of active antennas.A low-complexity detection algorithm termed energy ordered-relaxation iteration method(EORIM)is proposed.First,the possible active transmit antenna combinations and corresponding mirror activation pattern combinations are sorted according to their signal energy,then a relaxation iterative method is performed to obtain corresponding modulated signals.According to a predefined threshold,the algorithm strikes a trade-off between complexity and performance.Simulations show that the bit error ratio performance of EO-RIM algorithm approaches that of ML detection algorithm and is comparable to that of the ordered block minimum mean squared error detection algorithm.The computational complexity of EORIM grows with the square of the number of active antennas,while ML detector has exponential complexity.
作者 金宁 宋伟婧 金小萍 陈东晓 许翎靖 JIN Ning;SONG Wei-jing;JIN Xiao-ping;CHEN Dong-xiao;XU Ling-jing(Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province,China Jiliang University,Hangzhou 310018,China;College of Information Engineering,China Jiliang University,Hangzhou 310018,China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2019年第5期133-138,共6页 Journal of Beijing University of Posts and Telecommunications
基金 浙江省自然科学基金项目(LY17F010012) 浙江省教育厅科研资助项目(Y201840047) 国家级大学生创新创业训练计划项目(201810356030).
关键词 媒介调制 广义空间调制 松弛迭代 检测 media based modulation generalized spatial modulation relaxation iteration detection
  • 相关文献

参考文献1

二级参考文献12

  • 1Peng Li,Ross D. Murch.Multiple output selection-LAS algorithm in large MIMO systems. IEEE Communications Letters . 2010
  • 2X.Gao,L.Dai,C.Yuen,et al.Low-complexity MMSE Signal Detection Based on Richardson Method for Large-Scale MIMO Systems. 80th IEEE Vehicular Technology Conference . 2014
  • 3B.Yin,M.Wu,C.Studer,et al.Implementation Trade-offs for Linear Detection in Large-scale MIMO Systems. The 2013 IEEE International Conference on Acoustics,Speech and SignalProcessing . 2013
  • 4S.Nagaraja,O.Dabeer,A.Chockalingam.LargeMIMO Receiver Based on Linear Regression of MMSE Residual. 78th IEEE Vehicular Technology Conference . 2013
  • 5T.Datta,N.A.Kumar,A.Chockalingam.A Novel Monte-carlo-sampling-based Receiver for Largescale Uplink Multiuser MIMO Systems. IEEE Transactions on Vehicular Technology . 2013
  • 6W.Fukuda,T.Abiko,T.Nishimura,et al.Complexity Reduction for Signal Detection Based on Belief Propagation in a Massive MIMO System. The2013 IEEE International Symposium on Intelligent Signal Processing and Communications Systems . 2013
  • 7B.S.Rajan,S.K.Mohammed,A.Chockalingam,et a l.Low-complexity Near-ML Decoding of Large Non-orthogonal STBCs Using ReactiveTabu Search. The 2009 IEEE International Symposium on Information Theory . 2009
  • 8Som, Pritam,Datta, Tanumay,Srinidhi, N.,Chockalingam, A.,Rajan, B. Sundar.Low-complexity detection in large-dimension MIMO-ISI channels using graphical models. IEEE Journal on Selected Topics in Signal Processing . 2011
  • 9L.Lu,G.Y.Li,A.L.Swindlehurst,A.Ashikhmin.'An overview of mas-sive MIMO:benefits and challenges,'. IEEE Journal of Selected Topics in Signal Processing . 2014
  • 10T. L. Narasimhan,A. Chockalingam.'Channel Hardening-Exploiting Message Passing Receiver in Large-Scale MIMO Systems'. IEEE Journal of Selected Topics in Signal Processing . 2014

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部