摘要
传统的番茄叶部病害检测依赖于耗时费力的人工特征设计,必须针对病害的不同分类精心设计相关特征。番茄叶部病害症状复杂,人工设计特征较难。卷积神经网络(convolutional neural network,CNN)可以自动挖掘出隐藏在病害图像内部的抽象特征,在图像识别领域性能优越。该研究提出采用CNN与传统的HOG+SVM算法相结合的方法,抽取番茄叶部病害的浅层特征,将其输入到HOG生成HOG特征并合并,最后输入SVM分类器得到病害检测结果。该研究方法能够改进番茄叶部病害的检测精度。
Traditional tomato leaf disease detection relies on time-consuming and laborious artificial feature design and must be carefully designed for different types of tomato diseases.Symptoms of tomato leaf diseases are complex and adopting the methods of artificial design features is difficult.Convolutional Neural Network(CNN)can automatically discover the abstract features hidden in the diseased images,and its performance is superior in the field of image recognition.In this paper,the method combining CNN with traditional HOG+SVM algorithm was proposed to extract the shallow features of tomato leaf diseases,input them into HOG to generate HOG feature and merge them,and finally input them into SVM classifier to obtain disease detection results.Experiments showed that this method could improve the precision of tomato leaf disease detection.
作者
刘君
王学伟
LIU Jun;WANG Xuewei(Facility Horticulture Laboratory of Universities in Shandong,Weifang University of Science and Technology,Weifang,Shandong 262700)
出处
《北方园艺》
CAS
北大核心
2020年第4期147-152,共6页
Northern Horticulture
基金
山东省高等学校科研创新平台山东省高校设施园艺实验室资助项目(2019YY003,2018YY044,2018YY016,2018YY043)
寿光市应用技术研究与开发计划资助项目(2018JH12)
2019年度山东省民办高校基础能力建设工程资助项目
教育部科技发展中心创新基金资助项目(2018A02013)
2019年度教育部产学合作协同育人资助项目
潍坊市科技发展计划资助项目(2019GX081,2019GX082)
2018年度校级课题资助项目(2018RC002).
关键词
番茄叶部病害检测
卷积神经网络
多卷积特征
HOG
tomato leaf disease detection
convolutional neural network
multiple convolution features
HOG