期刊文献+

MAGAN:Unsupervised Low-Light Image Enhancement Guided by Mixed-Attention 被引量:6

原文传递
导出
摘要 Most learning-based low-light image enhancement methods typically suffer from two problems.First,they require a large amount of paired data for training,which are difficult to acquire in most cases.Second,in the process of enhancement,image noise is difficult to be removed and may even be amplified.In other words,performing denoising and illumination enhancement at the same time is difficult.As an alternative to supervised learning strategies that use a large amount of paired data,as presented in previous work,this paper presents an mixed-attention guided generative adversarial network called MAGAN for low-light image enhancement in a fully unsupervised fashion.We introduce a mixed-attention module layer,which can model the relationship between each pixel and feature of the image.In this way,our network can enhance a low-light image and remove its noise simultaneously.In addition,we conduct extensive experiments on paired and no-reference datasets to show the superiority of our method in enhancing low-light images.
出处 《Big Data Mining and Analytics》 EI 2022年第2期110-119,共10页 大数据挖掘与分析(英文)
基金 supported in part by the National Natural Science Foundation of China(No.62072169) Changsha Science and Technology Research Plan(No.KQ2004005)
  • 相关文献

同被引文献36

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部