期刊文献+

Digital twin modeling and controlling of optical power evolution enabling autonomous-driving optical networks:a Bayesian approach

原文传递
导出
摘要 Optical networks are evolving toward ultrawide bandwidth and autonomous operation.In this scenario,it is crucial to accurately model and control optical power evolutions(OPEs)through optical amplifiers(OAs),as they directly affect the signal-to-noise ratio and fiber nonlinearities.However,a fundamental contradiction arises between the complex physical phenomena in optical transmission and the required precision in network control.Traditional theoretical methods underperform due to ideal assumptions,while data-driven approaches entail exorbitant costs associated with acquiring massive amounts of data to achieve the desired level of accuracy.In this work,we propose a Bayesian inference framework(BIF)to construct the digital twin of OAs and control OPE in a data-efficient manner.Only the informative data are collected to balance the exploration and exploitation of the data space,thus enabling efficient autonomous-driving optical networks(ADONs).Simulations and experiments demonstrate that the BIF can reduce the data size for modeling erbium-doped fiber amplifiers by 80%and Raman amplifiers by 60%.Within 30 iterations,the optimal controlling performance can be achieved to realize target signal/gain profiles in links with different types of OAs.The results show that the BIF paves the way to accurately model and control OPE for future ADONs.
出处 《Advanced Photonics》 SCIE EI CAS CSCD 2024年第2期69-80,共12页 先进光子学(英文)
基金 supported by the Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University(Grant No.21TQ1400213) the National Natural Science Foundation of China(Grant No.62175145)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部