摘要
Achieving spatiotemporal control of light at high speeds presents immense possibilities for various applications in communication,computation,metrology,and sensing.The integration of subwavelength metasurfaces and optical waveguides offers a promising approach to manipulate light across multiple degrees of freedom at high speed in compact photonic integrated circuit(PIC)devices.Here,we demonstrate a gigahertz-rate-switchable wavefront shaping by integrating metasurface,lithium niobate on insulator photonic waveguides,and electrodes within a PIC device.As proofs of concept,we showcase the generation of a focus beam with reconfigurable arbitrary polarizations,switchable focusing with lateral focal positions and focal length,orbital angular momentum light beams as well as Bessel beams.Our measurements indicate modulation speeds of up to the gigahertz rate.This integrated platform offers a versatile and efficient means of controlling the light field at high speed within a compact system,paving the way for potential applications in optical communication,computation,sensing,and imaging.
基金
supported by the National Key R&D Program of China(Grant No.2019YFA0705000)
the National Natural Science Foundation of China(Grant Nos.12192251,12274134,12174186,and 62288101)
the Science and Technology Commission of Shanghai Municipality(Grant No.21DZ1101500)
the Shanghai Municipal Education Commission(Grant No.2023ZKZD35)
the Shanghai Pujiang Program(Grant No.20PJ1403400)