期刊文献+

纳米银复合的多孔生物质硅材料的制备及储锂性能 被引量:2

Reversible Storage of Lithium in Porous Biomass Silicon Decorated Silver Nanoparticles
原文传递
导出
摘要 以废弃的谷壳为原料,通过镁热还原-银镜反应法成功制备了多孔硅/银复合纳米材料,并研究其结构形貌及储锂性能。结果表明:采用谷壳为原料获得的硅/银复合材料为纳米多孔结构,其粒径约为10~20 nm,纳米银的原位复合可显著提高电极的循环稳定性能、倍率性能和比容量。原位纳米银粒子复合后的Si/Ag电极50次循环后的容量依然能维持750.4 mA·h/g,为石墨类碳材料容量的2倍以上,较生物质硅电极提高了370.2 mA·h/g,采用800 mA/g的电流密度进行大电流充放电时,Si/Ag电极表现出618.3 mA·h/g的可逆容量,远高于Si电极380.2 mA·h/g的容量。性能的改善缘于复合后本体材料较高的导电性和电极/电解液界面的优良性能。 A porous Si/Ag composite material derived by waste rice husk was synthesized via magnesiothermic reduction-silver mirror reaction.The structure,surface morphology and lithium storage performance were investigated.The results show that the particle sizes of obtained biomass silicon material with a porous structure are 10-20 nm,and the cycle performance,rate performance and specific capacity of the electrode all are improved by recombining silver nanoparticles.The capacity of electrode with the silver particles can retain 750.4 m A·h/g after 50 cycles,which is twice greater than that of graphite,and it is 370.2 mA·h/g greater than that of pure biomass silicon electrode.The biomass Si/Ag electrode exhibits the specific capacity of 618.3 m A·h/g at current density of 800 mA/g,which is higher than that of biomass silicon(380.2 m A·h/g),due to the higher conductivity of Si/Ag nanomaterial and excellent property of electrode/electrolyte interface.
作者 方涛 高帅 梁晓杜 李幼聪 张霞 马婷 廖丽霞 FANG Tao;GAO Shuai;LIANG Xiaodu;LI Youcong;ZHANG Xia;MA Ting;LIAO Lixia(College of Chemistry,Chemical Engineering and Resource Utilization,Northeast Forestry University,Harbin 150040,China)
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2020年第4期551-557,共7页 Journal of The Chinese Ceramic Society
基金 国家自然科学基金(51602046) 中央高校基本科研业务费项目(2572018BC30) 黑龙江省博士后面上项目(LBH-Z14003,LBH-Z14014) 大学生创新项目(201810225469).
关键词 生物质 锂离子电池 谷壳 镁热还原-银镜反应法 silicon biomass lithium ion battery rice husk magnesiothermic reduction-silver mirror reaction
  • 相关文献

参考文献5

二级参考文献37

  • 1张汉平,付丽君,吴宇平,吴浩青,高村勉.锂离子电池负极材料的研究进展[J].电池,2005,35(4):274-275. 被引量:13
  • 2Ryu J H, Kim J W, Sung Y E, et al. Electrochem. Solid-State Lett., 2004,7(10):A306-A309
  • 3Ohara S, Suzuki J, Sekine K, et al. J. Power Sources, 2003, 119-121:591-596
  • 4Takamura T, Ohara S, Uehara M, et al. J. Power Sources, 2004,1(129):96- 100
  • 5Lee H Y, Lee S M.J. Power Sources, 2002,112(2):649-654
  • 6Weydanz W J, Mehrens M W, Huggins R A. J. Power Sources, 1999,81-82:237-242
  • 7Hwang S M, Lee H Y, Jang S W, et al. Electrochem. Solid-State Lett., 2001,4(7):A97-A100
  • 8Yang X L, Wen Z Y, Zhu X J, et al. Electrochem. Solid-State Lett., 2005,8(9):A481-A483
  • 9Dimov N, Kugino S, Yoshio M. Electrochim. Acta, 2003,48 (11):1579-1557
  • 10Yang J, Wang B F, Liu Y, et al. Electrochem. Solid-State Lett., 2003,6(8):A154-A156

共引文献26

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部