摘要
短时路网交通速度预测是智能交通系统的重要技术。基于深度学习,文章提出了一种多任务学习时间卷积网络(Multi-Task Learning Temporal Convolutional Network,MTL-TCN),用于预测路网层面的短时交通速度。以广州市路网交通速度数据为数据源展开对比实验,结果表明MTL-TCN模型优于经典方法和深度学习方法。
Short-term network-wide traffic speed prediction is an important technique to Intelligent Transportation Systems.Based on deep learning,a Multi-Task Learning Temporal Convolutional Network(MTL-TCN)is proposed to predict network-wide short-term traffic speed.With traffic speed data from Guangzhou,the MTL-TCN model is superior to classical methods and deep learning methods.
作者
蒋枭哲
任冠青
周烽
张坤鹏
JIANG Xiaozhe;REN Guanqing;ZHOU Feng;ZHANG Kunpeng(College of Electrical Engineering,Henan University of Technology,Zhengzhou 450001,China;State Machinery Precision Industry Co.,Ltd.,Zhengzhou Branch,Zhengzhou 450001,China;Department of Automation,Tsinghua University,Beijing 100084,China)
基金
国家自然科学基金项目“基于生成对抗网络的城市路网交通状态重构方法研究”研究成果,项目编号:62002101。
关键词
短时交通速度预测
多任务学习
时间卷积网络
short-term traffic speed prediction
multi-task learning
temporal convolutional network