期刊文献+

关于离散量均值差和连续量均值差的几个估计

Several Estimations on the Mean-Value Difference of Discrete and Continuous Quantities
下载PDF
导出
摘要 本文给出离散量均值差A_n(a,ω)-G_n(a,ω)、A_n(a,ω)-H_n(a,ω)及连续量均值差A(f,p)-G(f,p)、A(f,p)-H(f,p)的估计. In this paper,Several Estimations on the Mean-Value Differences of discrete quantities A_n(a,ω)-G_n(a,ω)、A_n(a,ω)-H_n(a,ω)and continuous quantities A(f,p)-G(f,p)、A(f,p)-H(f,p),are obtained.
作者 桂绍辉 GUI Shaohui(School of Mathematical and Computer Science,Gannan Normal University,Ganzhou 341000,China)
出处 《赣南师范大学学报》 2018年第6期1-6,共6页 Journal of Gannan Normal University
基金 国家自然科学基金资助项目(11661006) 江西省自然科学基金资助项目(20161BAB201032).
关键词 几何平均 算术平均 调和平均 均值差 geometric mean arithmetic mean harmonic mean mean-value difference
  • 相关文献

参考文献2

二级参考文献13

  • 1柳泊廉,吴康.竞赛数学的原理和方法[M].广州:广东教育出版社,2002.
  • 2D.S.密特利诺维奇.解析不等式[M].张小萍,王龙,译.北京:科学出版社,1987.
  • 3杨克昌.平均值不等式的一个证明与加强.湖南数学通讯,1986,(4):19-20.
  • 4张小明.最值定理与分析不等式.不等式研究通讯,2010,7:107-138.
  • 5Mitrinovic D S. Vasic,P.M.,Analytic Inequalities[M]. Springer-Verlag New York, 1970.
  • 6Cartwright D I, Field M J. A refinement of the arithmetic mean-geometric mean inequality[J]. Proc Amer Math Soc, 1978(71): 36-38.
  • 7bullen P S. Handbook of Means and Their Inequalities[M]. Kluwer Academic Publishers, 2003.
  • 8Mercer A Mcd.Improved upper and lower bounds for the difference of An-Gn[J]. Rocky Mountain J Math, 2001(31): 553-560.
  • 9Williams K S and Beesack P R. Problem 247[J]. Crux Math, 1978(4): 23-26, 37-39.
  • 10Smitrinovic D, Epecaric J, Fink A M. Classical and New Inequalities in Analysis[M]. The Nether- lands: Kluwer Publishers, 19939.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部