期刊文献+

基于非易失性存储器件的类脑计算研究进展

Research progress of nuero-inspired computing using non-volatile memory
原文传递
导出
摘要 随着人工智能领域的快速发展,海量数据的处理需要相应硬件的对应开发。对人脑物理结构及工作机制的深入研究使得基于非易失性内存的类脑计算器件集成一系列受神经系统启发的功能,从而为大数据计算工作提供一种高效、节能的方法。本文介绍了类脑计算的发展历程,概述了针对不同应用的非易失性内存器件的大致分类,并着重介绍了代表性的非易失性内存器件构建人工突触和神经元器件的研究进展。 The rapid development of artificial intelligence demands the development of relevant hardware processing massive quantity of data.Neuro-inspired computing chips integrate a range of features inspired by neuro systems and could provide an energy-efficient approach to computing workloads involving big data.This article reviews the development history of neuro-inspired computing and generally introduces the genres of the non-volatile memory(NVM)devices based on their various applications.Then the article further reviewed the state of the art of the neuromorphic researches in which the NVM devices play the role of either the synapse or the neuron.
作者 周琮泉 秦瑞东 李鑫 ZHOU Cong-quan;QIN Rui-dong;LI xin(State Key Laboratory of Information Functional Materials,Shanghai Institute of Microsystems and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China)
出处 《功能材料与器件学报》 CAS 2021年第6期505-513,共9页 Journal of Functional Materials and Devices
关键词 类脑计算 非易失性内存器件 相变存储器 阻变随机存储器 铁电场效应晶体管 Neuro-inspired computing Non-volatile memory devices Phase change memory Resistive random access memory Ferroelectric field-effect transistor
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部