期刊文献+

基于GSA-SVR的超宽钢箱梁顶推施工全过程局部最大应力预测 被引量:2

Prediction of Local Maximum Stress of Ultra Wide Steel Box Girder during Incremental Launching Construction Process Based on GSA-SVR
下载PDF
导出
摘要 钢箱梁顶推施工中将局部应力控制在一定范围之内,有利于保证施工安全和质量。目前常根据是否产生结构失稳等施工隐患来考虑是否对局部进行加强。采用有限元计算超宽钢箱梁局部应力建模难度较大。为实现局部最大应力的科学预测,采用万有引力搜索算法(GSA)对支持向量回归(SVR)算法进行改进,实现了对惩罚参数和核参数的优化计算。基于GSA-SVR算法构建钢箱梁局部应力预测模型,可实现局部应力的有效预测。将算法和预测模型应用于济南凤凰黄河大桥钢箱梁顶推施工中的局部最大应力预测。结果表明:该模型预测有较高的精度,采用预测模型获得局部最大应力相比有限元计算获得方式效率更高。 The local stress in the construction of steel box girder is controlled within a certain range,which is beneficial to ensure the safety and quality of construction.At present,local reinforcement is often considered according to whether there is structural instability and other potential construction hazards.It is difficult to model the local stress of ultra wide steel box girder by finite element calculation.To achieve scientific prediction of local maximum stress,the gravitational search algorithm(GSA)is adopted to improve the support vector regression(SVR)algorithm,and the optimization calculation of the penalty parameter and the kernel parameter is realized.The local stress prediction model of steel box girder is constructed based on GSA-SVR algorithm,which can realize effective prediction of local stress.The algorithm and the prediction model are applied to the prediction of local maximum stress in the steel box girder incremental launching construction of Jinan Phoenix Yellow River Bridge.The result shows that the model has high prediction accuracy,and the use of the prediction model to obtain the local maximum stress is more efficient than the finite element calculation method.
作者 许为民 贺鹏 路辉 郭凤玉 周宁 XU Wei-min;HE Peng;LU Hui;GUO Feng-yu;ZHOU Ning(Jinan Urban Construction Group Co.,Ltd.,Jinan Shandong 250000,China;Shandong Great Highway Engineering Co.,Ltd.,Yantai Shandong 264000,China;Shandong Yifangda Construction Project Management Co.,Ltd.,Jinan Shandong 250000,China)
出处 《公路交通科技》 CAS CSCD 北大核心 2021年第S01期41-47,共7页 Journal of Highway and Transportation Research and Development
关键词 桥梁工程 钢箱梁 局部应力 GSA SVR 预测 bridge engineering steel box girder local stress GSA SVR prediction
  • 相关文献

参考文献5

二级参考文献44

  • 1代志龙,张小平,胡润芝.基于遗传算法与人工神经网络相结合的固体推进剂燃速计算[J].计算机与应用化学,2006,23(7):639-642. 被引量:5
  • 2Chang Chih-cheag, Chien Li-jen, Lee Yuh-jye. A Novel Framework for Multi-Class Classification via Ternary Smooth Support Vector Machine[J]. Pattern Recognition, 2011, 44: 1235.
  • 3Peng Xinjun. TPMSVM: A Aovel Twin Parametric-Margin Support Vector Machine for Pattern Reeognition[J]. Pattern Recognition, 2011,44 : 2678.
  • 4Yang Z, Gu X S. Genetic Algorithm-Least Squares Support Vector Regression Based Predicting and Optimizing Model on Carbon Fiber Composite Integrated Conductiyity[J]. Materi- als and Design, 2010, 31: 1042.
  • 5张学伟.基于智能方法的板形识别与控制[D].山东:济南大学,2010.
  • 6Peng Yan, Liu Hongmin. A Neural Network-Based Shape Control System for Cold Rolling Operations[J]. Journal of Materials Processing Technology, 2008,202 : 54.
  • 7Esmat Rashedi, Hossein Nezamabadi-pour, Saeid Saryazdl. GSA.. A Gravitational Search Algorithm[J]. Information Sci- ences, 2009, 179:2232.
  • 8Sarafrazi S, Nezamabadi-pour H, Saryazdi S. Disruption: A New Operator in Gravitational Search Algorithm[J]. Scientia Iranica D, 2011, 18(3): 539.
  • 9JIA Chun-yu SHAN Xiu-ying LIU Hong-min NIU Zhao-ping.Fuzzy Neural Model for Flatness Pattern Recognition[J].Journal of Iron and Steel Research International,2008,15(6):33-38. 被引量:13
  • 10贾仰文,王浩,彭辉.水文学及水资源学科发展动态[J].中国水利水电科学研究院学报,2009,7(2):81-88. 被引量:15

共引文献22

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部