期刊文献+

Comparison of TEC prediction methods in mid-latitudes with GIM maps

下载PDF
导出
摘要 There are many long-term and short-term prediction methods of Total Electron Content(TEC) that need to be tested for each specific region. Recently, much attention has been paid to testing TEC models in high-, low-latitude and equatorial regions. This paper compares the TEC prediction methods in the midlatitude zone according to the data of the Juliusruh, Rostov, Manzhouli stations in 2008 and 2015. For a long-term prediction, the IRI-Plas and Ne Quick models are compared with the Global Ionospheric Maps(GIM) presented by the Jet Propulsion Laboratory(JPL) and the Technical University of Catalonia(UPC).For a short-term prediction, the Standard Persistence Model(SPM) method, a 27 day median model, and the proposed short-term prediction method are compared for one day ahead. It is shown that for all stations the IRI-Plas model provides better compliance with GIM maps than the Ne Quick model irrespective of a solar activity level. An average absolute error lays in the range of 3 e3.5 TECU, relative root square mean(RMS) error in the range of 22 e27% in 2015 and 1.7 e2 TECU, 20 e25% in 2008. For the Ne Quick model, these estimates were 6.7 e8.2 TECU and 42 e45% in 2015 and 2.2 e3.6 TECU, 30 e37% in2008. For the short-term forecast, the best results were obtained by the SPM method with an average absolute error in the range of 1.95 e2.15 TECU in 2015 and 0.59 e0.98 TECU in 2008, a relative RMS error in the range of 17 e21% in 2015, 11.5 e15% in 2008. For the proposed short-term prediction method, these errors were 2.04 e2.2 TECU and 12 e14% in 2015 and 0.7 e1.0 TECU, 7 e11% in 2008. Using medians, the errors were 3.1 e3.4 TECU and 17 e21% in 2015 and 1.0 e1.3 TECU, 10 e15% in 2008. The dependence of results on the Dst-index was obtained.
机构地区 Institute for Physics
出处 《Geodesy and Geodynamics》 2020年第3期174-181,共8页 大地测量与地球动力学(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部