期刊文献+

基于背景先验与中心先验的显著性目标检测 被引量:2

Salient object region detection based on background-bias prior and center-biasPrior
原文传递
导出
摘要 针对传统的图流行排序显著性目标检测算法存在先验信息单一,显著目标检测不完整的问题,提出一种新的基于背景先验与中心先验的显著性目标检测算法。首先将图像边界节点作为背景种子进行流行排序获得粗略的前景区域,将其再次流行排序得到初步显著图;然后利用Harris角点检测、聚类实现中心先验显著性检测,捕获中心显著信息;最后在初步显著图上融合图像中心显著性,得到最终显著图。本文对综合指标、精确率-召回率曲线、F-measure值以及平均绝对误差(mean absolute error,MAE)值进行实验评估,在公开数据集MSRA-10K和ECSSD上进行的实验结果表明:对比10种主流算法,本文算法在不同的评估指标上都具有较好的表现,且能准确地突出显著目标,提升背景抑制效果。 In order to solve the problems of single prior information and incomplete salient object detection in the traditional algorithm,a new salient object detection algorithm based on background prior and center prior is proposed.Firstly,the edge nodes of the image are used as background seeds to manifold ranking,and the rough foreground area is obtained;Then,Harris corner detection and clustering are used to detect the prior significance of the center and capture the significant information of the center;Finally,the final saliency map is obtained by fusing the center saliency on the preliminary saliency map.In this paper,the comprehensive index,precision recall curve,F-measure value and mean absolute error(MAE)value of average absolute error are evaluated experimentally.The experimental results on the open data sets MSRA-10 K and ECSSD show that compared with 10 mainstream algorithms,the algorithm in this paper has good performance in different evaluation indicators,and can accurately highlight significant targets andimprove the effect of background suppression.
作者 吴迪 李婷 万琴 WU Du;LI Ting;WAN Qin(College of Electrical and Information Engineering,Hunan Institute of Engineering,Xiangtan,Hunan 411004,China;Hunan Key Laboratory of multi robot cooperative control based on multi-agent theory,Hunan Institute of Engineering,Xiangtan,Hunan 411004,China)
出处 《光电子.激光》 CAS CSCD 北大核心 2022年第8期799-806,共8页 Journal of Optoelectronics·Laser
基金 国家重点研发计划(2020YFB1713600) 国家自然科学基金(62006075,61841103) 湖南省教育厅项目(19A117,18B385) 湖南省自然科学基金(2019JJ50106)资助项目
关键词 显著性检测 流行排序 超像素节点 显著图 中心先验 salient object detection manifold ranking superpixel node saliency map central prior
  • 相关文献

参考文献5

二级参考文献15

共引文献28

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部