期刊文献+

风氢耦合并网系统能量管理控制策略 被引量:25

Control Strategy for Energy Management of Hybrid Grid-connected System of Wind and Hydrogen
下载PDF
导出
摘要 针对风氢耦合发电系统的燃料电池和电解槽出力响应延迟问题,本文构建了一种风力发电机、燃料电池、电解槽和超级电容耦合于直流母线的结构。根据燃料电池、电解槽和超级电容特性,提出了一种能量管理控制策略,使燃料电池和电解槽能够缓慢地补偿/消纳风力机与负荷调度之间的功率差,超级电容能快速地平滑燃料电池和电解槽响应延迟引起的功率不平衡,确保并网功率与负荷调度一致。Matlab/Simulink仿真结果验证了风氢耦合并网系统能量管理控制策略的有效性,该策略提高了系统的风电消纳能力,降低了并网功率波动。 To solve the problem of response delay in eletrolyzer and fuel cell of wind power coupled with hydrogen system,we proposed a dc-coupled structure system with wind generator,fuel cell,electrolyzer and supercapacitor According to the characteristics of fuel cell,electrolyzer and supercapacitor,we put forward a control strategy of energy management.Based on the proposed control strategy,the fuel cell and electrolyzer can gradually compensate/consume the difference between the power generated by wind turbines and the power required by load.Meanwhile,the supercapacitor can quickly smooth unbalance power caused by the response delay of fuel cell and electrolyzer,and ensure that the power output of hybrid system is consistent with load demand.Matlab/Simulink simulation results verify the effectiveness of the control strategy of hybrid grid-connected system of wind and hydrogen.The proposed control strategy improves the absorption capacity of wind power and reduces the grid connected power fluctuation.
作者 邓浩 陈洁 焦东东 李玉麒 DENG Hao;CHEN Jie;JIAO Dongdong;LI Yuqi(School of Electric Power,Xinjiang University,Urumqi 830047,China;Xinjiang Goldwind Sci&Tech Co.,Ltd.,Urumqi 830026,China)
出处 《高电压技术》 EI CAS CSCD 北大核心 2020年第1期99-106,共8页 High Voltage Engineering
基金 国家自然科学基金(51467020) 新疆维吾尔自治区自然科学基金(2019D01C078).
关键词 风电 电解槽 燃料电池 超级电容 控制策略 wind electrolyzer fuel cell supercapacitor control strategy
  • 相关文献

参考文献7

二级参考文献78

  • 1王飞,余世杰,苏建徽,沈玉梁.太阳能光伏并网发电系统的研究[J].电工技术学报,2005,20(5):72-74. 被引量:183
  • 2迟永宁,王伟胜,戴慧珠.改善基于双馈感应发电机的并网风电场暂态电压稳定性研究[J].中国电机工程学报,2007,27(25):25-31. 被引量:134
  • 3Liu Chunhua, Chau K T, Zhang Xiaodong. An efficient wind-photovoltaic hybrid generation system using doubly excited permanent-magnet brushless machine[J]. IEEE Transactions on Industrial Electronics, 2010, 57(3): 831-839.
  • 4A A Solomon, D Faiman, G Meron. Grid matching of large-scale wind energy conversion systems, alone and in tandem with large-scale photovoltaic systems: An Israeli case study[J]. Energy Policy, 2010, 38(4): 7070-708l.
  • 5Bahram Panahandeh, Jochen Bard, Abdelkader Outzourhit, et al. Simulation of PV -wind-hybrid systems combined with hydrogen storage for rural electrification[J]. International Journal of Hydrogen Energy, 2011, 36(5): 4185-4197.
  • 6Nabil A Ahmed, A K Al-Othrnan, M R AlRashidi. Development of an efficient utility interactive combined wind/photovoltaic/fuel cell power system with MPPT and DC bus voltage regulation[J]. Electric Power Systems Research, 2011, 35(3): 1096-1106.
  • 7Caisheng Wang, N ehrir M H. Power management of a stand alonewind photovoltaic fuel cell energy system[J]. IEEE Transactions on Energy Conversion, 2008,23(3): 957-967.
  • 8Francoise M, Bikashi P. Modal analysis of grid-connected doubly fed induction generators[J]. IEEE Transactions on Energy Conversion, 2007, 22(3): 728-736.
  • 9Yun Tian Tan, Kirschen D S, Jenkins N. A model of PV generation suitable for stability analysis[J]. IEEE Transactions on Energy Conversion, 2004, 19(4): 748-755.
  • 10Szumanowski A, Yuhua Chang. Battery management system based on battery nonlinear dynamics modeling[J]. IEEE Transactions on Vehicular Technology, 2008, 57(3): 1425-1432.

共引文献325

同被引文献295

引证文献25

二级引证文献226

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部