期刊文献+

基于卢瑟福原子模型的氦原子寿命研究

Study on lifetime of helium atom based on Rutherford's atomic model
下载PDF
导出
摘要 卢瑟福的原子模型提出了以核为中心的概念,很好地解释了α粒子散射实验.本文基于卢瑟福原子模型对氦原子寿命进行研究.通过对卢瑟福原子模型下的氦原子空间结构进行分析,利用拉莫尔公式对基态氦原子寿命进行了详细的推导与计算,并对计算过程中的误差进行了分析,得出在卢瑟福原子模型下基态氦原子的寿命约为1.7 ps,其值远小于人类所能感知的时间.同时对比了实际状态与原子消逝状态过程中原子内部电子的运行轨道、单个电子的能量和辐射功率的变化,证明卢瑟福原子模型不仅不能解释单电子的氢原子,同样也不能解释多电子的氦原子,使用卢瑟福原子模型解释原子空间结构仍存在局限性. The core centered concept is proposed in Rutherford’s atomic model,which well explains theαparticle scattering experiment.In this paper,the lifetime of helium atom was studied based on Rutherford’s atomic model.By analyzing the spatial structure of helium atom under Rutherford’s atomic model,the lifetime of ground state helium atom was deduced and calculated in detail by using Lamore formula,and the error in the calculation process was analyzed.It is obtained that the lifetime of ground state helium atom in Rutherford’s atomic model is about 1.7 ps,which is much less than the time that human can perceive.At the same time,by comparing the changes of the orbit of electrons in an atom,the energy and radiation power of a single electron between the actual state and the vanishing state of the atom,it was proved that Rutherford’s atomic model could not explain either single electron hydrogen atom or multi electron helium atom.There are still limitations in using Rutherford’s atomic model to explain atomic space structure.
作者 张波 霍春光 景钰茸 刘畅 代巍 ZHANG Bo;HUO Chunguang;JING Yurong;LIU Chang;DAI Wei(School of Electronic and Information Engineering,Liaoning Technical University,Huludao,Liaoning 125105,China)
出处 《中国科技论文在线精品论文》 2021年第4期498-503,共6页 Highlights of Sciencepaper Online
关键词 原子核物理学 卢瑟福原子模型的局限性 基态能量 氦原子寿命 nuclear physics limitations of Rutherford’s atomic model ground-state energy lifetime of helium atom
  • 相关文献

参考文献6

二级参考文献38

  • 1刘玉孝,赵振华,王永强,陈玉红.氦原子和类氦离子基态能量的变分计算及相对论修正[J].物理学报,2005,54(6):2620-2624. 被引量:22
  • 2胡先权,马勇,殷霖,郑瑞伦.四参数法计算氦原子基态能级研究[J].原子与分子物理学报,2006,23(6):1044-1050. 被引量:6
  • 3曾谨言.量子力学教程[M].2版.北京:科学出版社,2008.
  • 4周世勋,陈灏修.量子力学教程[M].2版.北京:高等教育出版社,2009:21-23.
  • 5Griffiths D J. Introduction to Quantum Mechanics [ M ]. New Jersey : Prentice Hall, 1995:261-265.
  • 6Frankowski K, Pekeris C L. Logarithmic terms in the wave functions of the ground state of two-electron atoms [J]. Phys Rev,1966,146(1) :46- 49.
  • 7Fischer C F. The Hartree-Fock Method for Atoms[ M]. New York: Jonh Wiley, 1977:132,153,28,164,104.
  • 8Duan Y S, Liu Y X, Zhang L J 2004 Chin. Phys. Lett. 21 1714.
  • 9Kabir P K and Salpeter E E 1957 Phys. Rev. 108 1256.
  • 10Yelkhovsky A 2001 Phys. Rev. A 64 062104 Yelhhovsky 2001 hep-ph/0103241.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部