摘要
In engineering practice,the output performance of contact separation TENGs(CS-TENGs)increases with the increase of tribo-pair area,which includes increasing the size of single layer CS-TENGs(SCS-TENGs)or the number of units(zigzag TENGs).However,such two strategies show significant differences in output power and power density.In this study,to seek a universal CS-TENG design solution,the output performance of a SCS-TENG and a zigzag TENG(Z-TENG)is systematically compared,including voltage,current,transferred charge,instantaneous power density,and charging power density.The relationship between contact area and output voltages is explored,and the output voltage equation is fitted.The experimental results reveal that SCS-TENGs yield better performance than Z-TENGs in terms of voltage,power,and power density under the same total contact area.Z-TENGs show energy loss during the transfer of mechanical energy,and such loss is aggravated by the increasing number of units.The instantaneous peak power of the SCS-TENG is up to 22 times that of the Z-TENG(45 cm^(2)).Furthermore,the power density of capacitor charging of SCS-TENGs is 131%of that of Z-TENGs,which are relatively close.Z-TENG is a feasible alternative when the working space is limited.
基金
funded by National Natural Science Foundation of China(Nos.:62225308 and 62001281)
Shanghai Science and Technology Committee(22dz1204300)