摘要
Solid oxide electrolysis cells(SOECs),displaying high current density and energy efficiency,have been proven to be an effective technique to electrochemically reduce CO_(2)into CO.However,the insufficiency of cathode activity and stability is a tricky problem to be addressed for SOECs.Hence,it is urgent to develop suitable cathode materials with excellent catalytic activity and stability for further practical application of SOECs.Herein,a reduced perovskite oxide,Pr_(0.35)Sr_(0.6)Fe_(0.7)Cu_(0.2)Mo_(0.1)O_(3-δ)(PSFCM0.35),is developed as SOECs cathode to electrolyze CO_(2).After reduction in 10%H_(2)/Ar,Cu and Fe nanoparticles are exsolved from the PSFCM0.35 lattice,resulting in a phase transformation from cubic perovskite to Ruddlesden-Popper(RP)perovskite with more oxygen vacancies.The exsolved metal nanoparticles are tightly attached to the perovskite substrate and afford more active sites to accelerate CO_(2)adsorption and dissociation on the cathode surface.The significantly strengthened CO_(2)adsorption capacity obtained after reduction is demonstrated by in situ Fourier transform-infrared(FT-IR)spectra.Symmetric cells with the reduced PSFCM0.35(R-PSFCM0.35)electrode exhibit a low polarization resistance of 0.43Ωcm^(2)at 850℃.Single electrolysis cells with the R-PSFCM0.35 cathode display an outstanding current density of 2947 mA cm^(-2)at 850℃and 1.6 V.In addition,the catalytic stability of the R-PSFCM0.35 cathode is also proved by operating at 800℃with an applied constant current density of 600 mA cm^(-2)for 100 h.
基金
supported by the National Natural Science Foundation of China(No.22278203,No.22279057)
the support of the Inner Mongolia major science and technology project(2021ZD0042),Development of integrated technology for CO_(2)emission reduction in electric power metallurgy industry