摘要
Lithium-ion batteries(LIBs)play a pivotal role in today's society,with widespread applications in portable electronics,electric vehicles,and smart grids.Commercial LIBs predominantly utilize graphite anodes due to their high energy density and cost-effectiveness.Graphite anodes face challenges,however,in extreme safety-demanding situations,such as airplanes and passenger ships.The lithiation of graphite can potentially form lithium dendrites at low temperatures,causing short circuits.Additionally,the dissolution of the solid-electrolyte-interphase on graphite surfaces at high temperatures can lead to intense reactions with the electrolyte,initiating thermal runaway.This review introduces two promising high-safety anode materials,Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7).Both materials exhibit low tendencies towards lithium dendrite formation and have high onset temperatures for reactions with the electrolyte,resulting in reduced heat generation and significantly lower probabilities of thermal runaway.Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7)offer enhanced safety characteristics compared to graphite,making them suitable for applications with stringent safety requirements.This review provides a comprehensive overview of Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7),focusing on their material properties and practical applicability.It aims to contribute to the understanding and development of high-safety anode materials for advanced LIBs,addressing the challenges and opportunities associated with their implementation in real-world applications.
基金
financially supported by an Australian Research Council(ARC)Discovery Project(DP180101453)
an Australian Renewable Energy Agency(ARENA)Project(G00849)
the 2021 Ludo Frevel Crystal ography Scholarship Award
an AINSE Ltd.Postgraduate Research Award(PGRA)