期刊文献+

基于行小波编码的纹理隐藏三维地形数据算法 被引量:1

Three-dimensional Landform Data with Texture Information Hiding Technique Via Line-based Wavelet Code(LBWC)
下载PDF
导出
摘要 讨论利用纹理图像隐藏高程信息来保护三维地形数据的信息隐藏技术。首先提出了改进的基于行小波变换及其编码,在保持地形形状和起伏特征的前提下实现高程数据的极低比特率低存储压缩。通过研究可嵌入隐藏信息的小波系数集合生成方法并结合基于视觉系统(HVS)小波域量化噪声的视觉权重(JND)分析技术,提出了自适应确定信息嵌入强度的方法。由于隐藏过程采用分组密码Rijndael生成单向Hash函数,信息隐藏算法高度安全、可以公开。 An information hiding technology is presented in this paper,in which the 3-D landform data is protected and the information of elevation is hidden in the texture.In keeping the terrain figure and hypsography, the terrain information is compressed in low bit ratio and least memory by using improved line-based code approach.A method to build the wavelet coefficient set which can be embedded into the hided information is provided.The strength of the embedding data is image-adaptive according to the wavelet qua...
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2006年第6期90-94,共5页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(60573027)
关键词 信息隐藏 数字高程模型 基于行小波编码 information hiding digital elevation mode LBWC
  • 相关文献

参考文献9

二级参考文献35

  • 1Ware JM. A procedure for automatically correcting invalid flat triangles occurring in triangulated contour data. Computers & Geosciences, 1998,24(2):141-151.
  • 2Ohbuchi R, Masuda H, Aono M. Watermarking three-dimensional polygonal models. In: Proc. of the ACM Multimedia'97. New York: ACM Press, 1997.261-272.
  • 3Cayre F, Macq B. Data hiding on 3-D triangle meshes. IEEE Trans. on Signal Processing, 2003,51(4):939-948.
  • 4van Schyndel RG, Tirkel AZ, Osborne CF. A digital watermark. In: Proc. of the IEEEI Int'l Conf. on Image Processing (ICIP'94).1994. 86-90.
  • 5Watson AB, Yang GY. Visibility of wavelet quantization noise. IEEE Trans. on Image Processing, 1997,6(8): 1164-1174.
  • 6Merkle R. One way hash functions and DES. In: Brassard G, ed. Advances in Cryptology, Proc. of the CRYPTO'89. LNCS 435,Springer-Verlag, 1989.428-446.
  • 7Calderbank AR, Daubechies I, Sweldens W, Yeo B-L. Wavelet transforms that map integers to integers. Applied and Computational Harmonic Analysis, 1998,5(3):332-369.
  • 8Mallat SG. Multiresolution approximation and wavelet orthogonal base of L^2(R). Trans. of the American Mathematical Society,1989,315(1):69-87.
  • 9Daubechies I. Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics,1988,41 (7):909-996.
  • 10Cohen A, Daubechies I, Feauveau J. Bi-Orthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 1992,45(5):485-560.

共引文献47

同被引文献7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部