期刊文献+

具有拟周期外力的非自治发展方程的时滞惯性流形与近似惯性流形

Inertial Manifolds with Delays and Approximate Inertial Manifolds of a Class of Non-autonomous Evolution Equations with Quasi-periodic Terms
下载PDF
导出
摘要 研究了一类具有拟周期外力的非自治发展方程,通过延伸相平面将非自治系统转化为自治系统,再证明相应的自治系统的时滞惯性流形的存在性,并在时滞惯性流形的基础上构造了非自治发展方程的近似惯性流形。 The present paper deals with the long-time behavior of a non-autonomous evolution equations with quasi-periodic term.Firstly the existence of the inertial manifold with delay of the system was proved by transferring the non-autonomous system to an autonomous system through extending the phase plane.Then the approximate inertial manifold of the system was constructed.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2006年第6期32-37,共6页 Journal of National University of Defense Technology
基金 国家自然科学基金资助项目(10571175)
关键词 拟周期外力 时滞惯性流形 近似惯性流形 quasi-periodic term inertial manifold with delay approximate inertial manifold
  • 相关文献

参考文献12

  • 1[1]Temam R.Infinite-dimensional Dynamical Systems in Mechanics and Physics[M].NewYork:Springer-Verlag,1988.
  • 2[2]Sell G,You Y.Inertial Manifolds:The Non-self-Adjoint Case[J].Journal of Differential Equations,1992,96:203-255.
  • 3[3]Monvel L,Chueschov I,Rezounenko A.Inertial Manifold for Retard Semilinear Parabolic Equations[J].Nonlinear Analysis,1998,34:907-925.
  • 4[4]Rezouneko A.Approximate Inertial Manifolds for Retarded Semilinear Parabolic Equations[J].J.Math.Anal.Appl.,2003,282:614-628.
  • 5[5]Travis C,Webb D.Existence and Stability for Partial Functional Differential Equations[J].Transactions AMS,1974,200:395-418.
  • 6[6]Wu J.Theory and Applications of Partial Functional Differential Equations[M].Springer-verlag,New York,Berlin,1996.
  • 7殷朝阳,赵怡,黄煜.具有拟周期外力的非自治发展方程的惯性流形[J].数学年刊(A辑),2000,1(4):457-470. 被引量:6
  • 8[8]Debussche A,Temam R.Inertial Manifolds with Delay[J].Appl.Math.Lett.,1995,8:21-24.
  • 9[9]Chepyzhov V,Vishik I.Attractor of Non-autonomous Dynamical Systems and Their Dimension[J].J.Math.Pure Appl.,1994,73:279-333.
  • 10李开泰,侯延仁.时滞惯性流形及近似时滞惯性流形族[J].数学学报(中文版),2000,43(3):435-444. 被引量:4

二级参考文献11

  • 1[1]Temam, R. Infinite dimensional dynamical systemsin mechanics and physics [M], Springer Verlag,New York, 1988
  • 2[2]Mallet-Paret, J. & Sell, G. R. Inertial manifolds for reaction-diffusion equations in higher space dimension [J], J. Amer. Math. Soc., 1(1989), 805--866
  • 3[3]Debussche, A. & Marion, M. On the construction offamilies of approximate inertial manifolds [J], J. DifferentialEquations, 100(1992), 173--201
  • 4[4]Eden, A. & Rakotoson, J. M. Exponentialattractors for a double nonlinear equation [J], Journal of Mathematical Analysis and Applicationa, 185(1994), 321--339
  • 5[5]Chepyzhov, V. V. & Vishik, M. I. Attractors ofnon-autonomous dynamical systems and their dimansion [J], J. Math. Pures Appl., 73(1994), 279--333
  • 6[6]Haraux, A. Attractors of asymptotically compactprocesses and applications to nonlinear partial differential equations [J], Comm. P. D. E., 13(1988), 1383--1414
  • 7[7]Smiley, M. W. Global attractors and approximateinertial manifolds for nonautonomous dissipative equations [J], Applicable Analysis, 50(1993), 217--241
  • 8Li Kaitai,Discrete Continuous Dynamical Systems,1996年,2卷,4期,497页
  • 9Marion M,SIAM J Numer Anal,1995年,32卷,4期,1170页
  • 10Li Kaitai,Hilbert Space Methods for Mathematical Physics Equations Vol 2,1992年

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部