摘要
研究非线性动力系统周期解的单调同伦法。首先讨论周期解同伦的折叠奇异性。给出了周期解曲线出现折点的充要条件。提出数值求周期解的单调同伦方法,证明了它的全局收敛性。同时指出了它的二阶收敛性。最后给出数值例子。说明本方法的有效性。
This paper deals with the numerical periodic solutions of nonlinear dynamical systems. The fold point singularity of the homotopy of periodic solutions is discussed, and the sufficient and necessary condition for the fold point is also given. Then a novel monotone homotopy method is developed for solving the periodic solution and its global convergence is proved as well. Finally the effectiveness of this method is illustrated with a numerical example.
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
1996年第6期54-60,共7页
Journal of South China University of Technology(Natural Science Edition)
基金
国家自然科学基金
关键词
周期解
单调同伦法
折点
全局收敛性
periodic solutions
monotone homotopy methods
fold points
global convergence