摘要
带有非线性隶属函数(NLMF)的模糊线性规划(FLP)问题。通常是一个非线性规划(NLP)问题。本文利用“较大”、“较小”型隶属函数的特点,把求解原FLP问题最优解的过程化为求解一个参数线性规划(LP)问题及修正参数的交替迭代过程。通过构造不同的参数LP问题及修正参数的方法,得到了求解原问题的“试点法”和“收缩法”,在此基础上,综合得出兼有两法优点的“加速算法”,理论分析及实例都证明这些算法尤其是加速算法在求解带有非线性隶属函数的FLP问题时是有效的.
The fuzzy linear programming (FLP) problem with nonlinear membership function (NLMF) is usually a nonlinear programming (NLP) problem. In this paper, we, by use of the characteristies of the membership function of the form 'smaller' and 'larger', transform the solving of the original FLP problem into the processing for solving a supplementary parameter linear programming (LP) problem and modifying the parameter value, alternatively. By constructing different supplementary parameter LP problem or different m...
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
1992年第5期35-42,共8页
Journal of Southeast University:Natural Science Edition
关键词
非线性/隶属函数
模糊线性规划
试点法
收缩法
加速算法
nonlinear/membership function
fuzzy linear programming
the trial and error method
contracting method
speed-up algorithm