期刊文献+

关于曲线积分、曲面积分的定义

下载PDF
导出
摘要 关于曲线积分、曲面积分的定义,在现行的教材中多是将其分为第一型(对弧长、对面积)和第二型(对坐标)分别给出的.这种作法在教学中存在着如下两个主要问题:1.由于分别叙述,且内容大体一致,就显得重复繁琐;2.两个定义采取了不同的定义基础(第一型是对光滑曲线、光滑曲面的,第二型是对有向光滑曲线、有向光滑曲面的)”因而无助于对两类曲线积分、曲面积分的联系的理解.针对这种状况,我们采取了如下两个措施:1.两类曲线积分、曲面积分的定义统一给出,节省了叙述的篇幅;2.将两类曲线积分、曲面积分都分别定义在有向光滑曲线、有向光滑曲面上,使定义基础一致,便于对它们的联系的理解.限于篇幅,本文仅就曲线积分进行讨论.
出处 《高等数学研究》 1996年第1期40-41,共2页 Studies in College Mathematics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部