期刊文献+

在Freud正交多项式零点处的算子收敛性

The Convergence of Interpolation Operators Based on the Zeros of Orthogonal Polynomials with Freud Weights
下载PDF
导出
摘要 设wβ(x)=e-12|x|β(β>76为Freud权,Freud正交多项式定义为关于上述定义的指数型Freud权正交的多项式,其零点分布在全实轴上。该文将Freud正交多项式零点作为插值结点,讨论了Hermite插值算子在全实轴上的收敛性,并得到:对实数轴上的任意一点X,Hermite算子收敛至函数f(x)。其中,yk=O(e(1/2-δ0)|xk|β),f(x)为实数轴上任一满足|f(x)|=O(e(1-ε0)|x|β)的连续函数。 Let Wβ(x)=e-12|x|β(β>76 be a certain type of Freud weights,{pn(x)}∞n=1 be the sequence of orthogonal polynomials with respect to the Freud weights,and the zeros of pn(x) are distributed on the whole real line.The present paper investigates the convergence of Hermite interpolator operators at the zeros of the orthogonal polynomials for the Freud weights.We prove that limn∞Hn(f,x)=f(x) holds for every x where yk=O(e(1/2-δ0)|xk|β),|f(x)|=O(e(1-ε0)|x|β).
作者 赵易
出处 《杭州电子科技大学学报(自然科学版)》 2008年第1期93-95,共3页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 浙江省教育厅资助项目(kyg091206029) 杭州电子科技大学优秀青年教师基金资助项目(zx050227)
关键词 指数型权 正交多项式 插值 收敛性 exponential weights orthogonal polynomials interpolation convergence
  • 相关文献

参考文献5

  • 1[1]Levin A L,Lubinsky D S.Christoffel functions,orthogonal polynomials,and Nevai's conjecture for Freud weights[J].Constr Approx,1992,8(4):463-535.
  • 2[2]Lubinsky D S,Matjila D M.Necessary and sufficient conditions for meanconvergence of Lagrange interpolation for Freud weights[J].SIAM J Math Anal,1995,26(1):238-262.
  • 3[3]Mhaskar H N,Saff E B.Extremal problems for polynomials with exponentialweights[J].Trans Amer Math Soc,1984,(1):203-234.
  • 4[4]Sakai R.Lagrange interpolation based at the zeros of orthonormal polynomials with Freud weights[J].J Approx Theory,1998,92(1):116-127.
  • 5[5]Szabo V E S.Weighted interpolation:The theory[J].Acta Math Hungar,1999,83(1):131-159.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部