期刊文献+

基于蚁群算法的月球软着陆轨迹优化 被引量:24

Optimization of Lunar Soft Landing Trajectory Based on Ant Colony Algorithm
下载PDF
导出
摘要 针对基于最省燃料的月球软着陆轨迹优化问题进行了研究。首先通过改进的函数逼近法,将月球软着陆的轨迹优化问题转化为参数优化问题,并且使优化变量及状态变量均有明确的物理意义。然后利用增加了局部搜索策略的十进制蚁群算法对该优化问题进行研究。仿真算例证明十进制蚁群算法能快速地搜索到满足终端约束条件的最优月球软着陆轨迹,而且燃料消耗也与采用极大值原理得到的最优燃料消耗相当;同时与改进的遗传算法-自适应模拟退火遗传算法相比,在优化精度相差不多的情况下十进制蚁群算法收敛速度要快很多。仿真结果也说明增加局部搜索策略的十进制蚁群算法具有优良的全局和局部搜索能力。 The optimization of lunar soft landing trajectory was studied in this paper.Firstly a new parameterized method was developed to convert the trajectory optimization problem into a parameter optimization problem,in which all optimization parameters and motion states had specific physical meanings.Then a new decimalization ant colony algorithm(DACA) with a local search strategy was proposed and applied to solve this optimization problem.Simulation results show that DACA is efficient for finding the global opti...
出处 《宇航学报》 EI CAS CSCD 北大核心 2008年第2期476-481,488,共7页 Journal of Astronautics
基金 国家自然科学基金(10702003)
关键词 轨迹优化 月球软着陆 蚁群算法 局部搜索策略 Trajectory optimization Lunar soft landing Ant colony algorithm Local search strategy
  • 相关文献

参考文献4

  • 1王大轶,乔国栋,李铁寿.用于月球软着陆最优轨迹跟踪制导过程的模糊神经网络控制方法(英文)[J].宇航学报,2007,28(5):1149-1155. 被引量:9
  • 2[5]Colorni A,Dorigo M,Maniezzo V,et al.Distributed optimization by ant colonies[C].Proceedings of the 1st European Conference on Artificial Life,1991:131-142.
  • 3[6]Dorigo M,Maiezzo V,Colornia A.Ant system:optimization by a colony of cooperating agents[J].IEEE Transaction on Systems,Man,and Cybernetics-Part B,1996,26(1):29-41.
  • 4[8]Dorigo M,Gambardella L M.Ant colony system:A cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.

二级参考文献1

共引文献8

同被引文献228

引证文献24

二级引证文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部