期刊文献+

一种新的小波视频去噪方法 被引量:1

A Novel Wavelet Video Denoising Method
下载PDF
导出
摘要 为了去除单帧图像小波去噪后残留的噪声和去噪时引入的类似脉冲噪声的伪细节,提出一种基于运动补偿的三维KNN(K-Nearest Neighbors)帧间滤波视频序列去噪方法。该方法首先对含噪声的视频序列中的每一帧图像进行小波去噪,然后对去噪后的图像进行基于运动补偿的三维KNN帧间滤波。实验结果显示,本文中提出的方法可以有效去除视频序列中的噪声,同时可以很好地保持运动对象的边缘。 A novel wavelet video denoising method is proposed to remove the residual noise and artifacts after wavelet denoising of individual frames. The method processes each frame of video in two steps: (i)denoising each frame in the wavelet domain, and (ii)3D KNN (K-Nearest Neighbors) filtering based on motion compensation. Experimental results show this method removes noise significantly and preserves motion object boundaries.
出处 《微计算机信息》 北大核心 2008年第4期303-305,共3页 Control & Automation
基金 国家自然科学基金资助项目(<智能粒子滤波器在人体运动跟踪中的应用> No.60572041)
关键词 小波去噪 视频去噪 帧间滤波 运动补偿 wavelet denoising video denoising inter-frame filtering motion compensation
  • 相关文献

参考文献8

  • 1[1]Donoho D L.De-noising by Soft-thresholding[J].IEEE Trans on Information Theory,1995,41(3):613-627.
  • 2[2]Crouse M S,Nowak R D,Baraniuk R G.Wavelet-based Statistical Signal Processing using Hidden Markov Models[J].IEEE Trans.on Signal Processing,1998,46(4):886-902.
  • 3[3]Portilla J,Strella V,Wainwright M,et al.Image Denoising using Scale Mixtures of Gaussians in the Wavelet Domain[J].IEEE Trans.on Image processing,2003,12(11):1338-1351.
  • 4赵艳明,全子一.一种空间自适应小波门限去噪算法[J].光通信研究,2004(5):49-51. 被引量:4
  • 5张黎,王立克,杨峰,李淑霞.小波阈值图像去噪研究与应用[J].微计算机信息,2006,22(10X):293-295. 被引量:14
  • 6[6]Mitchell H B,Mashkit N.Noise smoothing by a fast k-nearest neighbor algorithm[J].Signal Processing:Image Communication,1992,4(33):227-232.
  • 7[7]Tekalp A M.Digital Video Processing[M].北京:清华大学出版社,1998.
  • 8[8]Pizurica A.,Zlokolica V,Philips W.Noise Reduction in Video Sequences using Wavelet-domain and Temporal Filtering[C].Providence,RI,USA:SPIE Conference on Wavelet Applications in Industrial Processing,2003,5266:48-59.

二级参考文献22

  • 1赵艳明,全子一.一种有效的小波-Wiener滤波去噪算法[J].北京邮电大学学报,2004,27(4):41-45. 被引量:13
  • 2黄玉程,胡国清,吴雄英,刘文艳.人脸识别系统中图像噪声去除方法研究[J].微计算机信息,2005,21(12Z):187-188. 被引量:5
  • 3Chang S G, Yu B, Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denoising [A]. ICIP1998 [C]. Chicago, USA: IEEE, 1998. 535-539.
  • 4Chang S G, Yu B, Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denoising [J]. IEEE Transactions on Image Processing, 2000, 9(9): 1522-1531.
  • 5Marpe D, Cycon H L, Zander G, et al. Context-based denoising of images using iterative wavelet thresholding [A]. SPIE2002 [C]. San Jose, CA, USA: SPIE, 2002. 907-914.
  • 6Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrica, 1994(81):425-455.
  • 7Chang S G, Yu B, Vetterli M. Image denoising via lossy compression and wavelet thresholding [A]. ICIP1997 [C]. Washington DC, USA: IEEE, 1997. 604-607.
  • 8Gunawan D.Denoising images using wavelet transform[A].In:Proceedings of the IEEE Pacific Rim Conference on Communications,Computers and Signal Processing[C].Victo riaBC,USA,1999:83~85.
  • 9Zhang Xiao Ping,Desai MD.Adaptive denoising based on SURE risk[J].IEEE Signal Processing,1998,5(10):265~267.
  • 10Weyrich N,Warho la G T.Wavelet shrinkage and generalized cross validation for image denoising[J].IEEE Trans.Image Processing,1998,7(1):82~90.

共引文献16

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部