期刊文献+

基于支持向量机的高分辨距离像分类法 被引量:2

High Range Resolution Profile Classification Based on Support Vector Machine
下载PDF
导出
摘要 雷达高分辨距离像(HRRP)识别,是军事目标识别的一个重要手段。支持向量机(SVM)具有良好的泛化能力,适用于小样本学习问题。本文针对3类飞机目标的HRRP数据,构造了SVM分类器,设计了2组实验以比较SVM与最大相关系数法(MCM)的泛化能力、识别速度和抗噪能力。实验结果表明,SVM在军事目标HRRP分类方面具有良好的应用前景。 Radar high range resolution profile (HRRP) classification is an important method of military target recognition. Because of its good generalization property, support vector machine (SVM) has better performance on small training set learning. Based on the HRRPs of 3 types of aircraft, 2 experiments are designed to compare the performance of SVM method and maximum correlation method (MCM) on generalization property, classification speed and noise resistance. It is demonstrated by experimental results that SVM...
作者 徐培 章毓晋
机构地区 清华大学
出处 《微计算机信息》 北大核心 2008年第10期254-255,共2页 Control & Automation
关键词 高分辨距离像 雷达目标分类 支持向量机 High range resolution profile Radar target classification Support vector machine.
  • 相关文献

参考文献4

  • 1[1]Zyweek A,Bogner RE.Radar target classification of commercial aircraft[J].IEEE Trans.on AES,1996,32(2):589-606
  • 2[2]Smith C R,Goggana P M.Radar target identification.IEEE Antennas and Propagation Magazine,1993,35(2):27-38.
  • 3[3]Li H,Yang S.Using range profiles as feature vectors to identify aerospace object[J].IEEE Trans.on AP,1993,41(3):261-280.
  • 4张宏烈.支持向量机在字符识别中的应用研究[J].微计算机信息,2006(04Z):245-247. 被引量:11

二级参考文献3

共引文献10

同被引文献13

  • 1袁莉,刘宏伟,保铮.基于中心矩特征的雷达HRRP自动目标识别[J].电子学报,2004,32(12):2078-2081. 被引量:33
  • 2V Vapnik. Statistical Learning Theory[M]. New York:John Wiley & Sons Inc, 1998 : 116-200.
  • 3V N Vapnik. The nature of statistical learning theory [M]. New York:Springer-Verlag, 1995.
  • 4V Vapnik. An overview of Statistical Learning Theory [J]. IEEE Transactions on Neural Networks, 1999,10 (5) :988-999.
  • 5C Cores, V Vapnik. Support Vector Networks[J]. Machine Learning, 1995,20: 273 -297.
  • 6PEI B N , BAO Z. Multi-Aspect Radar Target Recogni-tion method based on scattering centers and HMMS clas-sifiers[ J]. IEEE Trans, on A E,2005,41(3) : 1067-1074.
  • 7XING M D, BAO Z,PEI B N. The Properties of High-Solution Range Profiles [ J]. Optical Engineering,2002,41(2) :493-504.
  • 8ZHANG X,SHI Y, BAO Z. A New Feature Vector U-sing Selected Bispectra for Signal Classification with Ap-plication in Radar Target Recognitionf J]. IEEE Trans,on S P,2001 ,49(9) :1875-1885.
  • 9曹向海,刘宏伟,吴顺君.多极化多特征融合的雷达目标识别研究[J].系统工程与电子技术,2008,30(2):261-264. 被引量:14
  • 10阳爱民,李心广,周咏梅,胡运发.一种基于支持向量机的模糊分类器[J].系统仿真学报,2008,20(13):3414-3419. 被引量:8

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部