期刊文献+

基于相似度的异常检测方法 被引量:1

SIMILARITY BASED TIME SERIES ANALYSE METHOD
下载PDF
导出
摘要 提出一种时间序列的相似度计算方法,采用统计学中相关因子的思想,用来衡量两段时间序列数据在视觉上的相似程度。在在各种时间序列数据实时检测中,能快速检测到具有周期性数据的异常并定位异常源,实验证明用于异常检测时效果较好。 Based on the coefficient of time series data,we developed a method to measure the similarity of the data in figure. By using this method,we could detect the anomaly of the time series data with periodicity. In the experiment,the method is proved effectively.
出处 《微计算机信息》 北大核心 2008年第12期166-167,103,共3页 Control & Automation
基金 自然科学基金项目"面向Internet的分析与测量技术"(60203021)
关键词 时间序列 相似度 异常检测 time series similarity anomaly detection
  • 相关文献

参考文献4

二级参考文献11

  • 1王全德,李世超,李祥和.安全防护系统及其关键技术研究[J].微计算机信息,2005,21(06X):1-3. 被引量:4
  • 2Forrest S,Perelson A,Allen L, Cherukuri R.Self-non-self discrimination in a computer[C].Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. 1994,202-212.
  • 3P D' haeseleer, Forrest S.An Immunologicial Approach to Change Detection:Algorithm,Analysis and Implication [J].In Proc.of IEEE Symposium on Research in Security and Privacy,Oakland,CA. 1996.
  • 4Matzinger P.Tolerance,Danger and the Extended Family[J].Annual Review of Immunology. 1994,12:991-1045.
  • 5Matzinger P.The Danger Model in Its HistoricalContext[J].Scandinavian Journal of Immunology. 2001,54:4-9.
  • 6Tim R Mosmann,Alexandra M Livingstone. Dendritic cells:the immune information management experts [J]. Nature Immunology.2004,5(6):564-566.
  • 7Manfred, B. L.and Schuler, G.Immature,semi-mature, and fully mature dendritic cells: which signals induce tolerance or immunity[J|.Trends in Immunology. 2002,Vol.23, No.9,991-1045.
  • 8Matzinger P.The Danger Model: A Renewed Sense of Selt[J].Science 2002,296:301-305.
  • 9Forrest S, Hofmeyr S A.A Sense of Self for Unix Processes[C].In:Proceedings of 1996 IEEE Symposium on Coputer Security and Privacy. 1996,120-128.
  • 10Julie Greensmith, Uwe Aickelin, Steve Cayzer. Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomaly Detection [R]. Digital Media Systems Laboratory.HPL-2005-117. 2005-7.

共引文献2

同被引文献9

  • 1郑军,胡铭曾,云晓春,郑仲.基于数据流方法的大规模网络异常发现[J].通信学报,2006,27(2):1-8. 被引量:17
  • 2BARFORD P, KLINE J,PLONKA D. A signal analysis of network traffic a nomalies [C]// Proceedings of ACM SIGCOMM Internet Measurement Workshop. Marseilles,France,2002:71-82.
  • 3LAKHINA A,CROVELLA M,CHRISTOPHES D. Char- acterization of Network-Wide Anomalies //Proceedings of the 4th ACM SIGCOMM conference on Internet measurement. Taormina,Sicily, Italy. 2004:201-206.
  • 4CHENG C M, KUNG H T, TAN K S. Use of Spectral Analysis in Defense Against DoS Attacks [C]//Global Telecommunications Conference. [S.1.]: IEEE Press, 2002: 2143-2148.
  • 5SAVAGE S,WETHERALL D,KARLIN A,et al.Practical Network Support for IP Traceback[C]//Proceedi-ngs of the 2000 ACM SIGCOMM Conference ,Sto-ckholm,Sweden,2000:295-306.
  • 6BAKOS G, BERK V. Early detection of Internet worm activity by metering ICMP destination unreachable activity[C]//Proceedings of the SPIE conference on Sensors, and Command, Control, Communications and Intelligence. Orlando, FL, 2002:.
  • 7JUAN M E,PEDRO G,JESUS E D. Anomaly detection methods in wired networks: a survey and taxonomy[J]. Computer Communications, 2004, 27(16):1569-1584.
  • 8[EB/OL].http//www.intemet2.edu/network/.
  • 9杨岳湘,王海龙,卢锡城.基于信息熵的大规模网络流量异常分类[J].计算机工程与科学,2007,29(2):40-43. 被引量:6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部