期刊文献+

基于群论方法构造的洗牌环网络 被引量:1

Shuffle Ring Network Based on Group Theory
下载PDF
导出
摘要 类似于De Bruijn图和洗牌交换网络的构造思想,引入了洗牌环网络,证明了SRmn是基于圈积Zm~Zn上的Cayley图CCRmn的右陪集图,且后者的左陪集图即为超圆环面CQnm. Analogous to the construction idea of De Bruijn graph and Shuffle-Exchange network,introduces the shuffle ring network(SRmn) and shows that SRmn is the right coset graph of Cayley graph CCRmn which is based on wreath product Zm~ Zn,and the left coset graph of CCRmn is supper torus CQmn.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期13-16,共4页 Journal of Fujian Normal University:Natural Science Edition
基金 福建省教育厅基金资助项目(JB05333) 福建省科技计划项目(2006F5035)
关键词 群论 图论 洗牌环网络 group theory graph theory shuffle exchange network
  • 相关文献

参考文献7

  • 1[1]Akers S B,Krishnamurthy B.A group-theoretic model for symmetric interconnection networks[J].IEEE Trans on Computers,1989,38(4):555-586.
  • 2[2]Parhami B.A introduction to parallel processing:algorithms and architectures[M].New York:Plenum Perss,1999.
  • 3[3]Hans Kurzweil,Bernd Stellmacher.The theory of finite groups-A introduction[M].New York:Springer-Verlag,2004.
  • 4[4]Annexstein F,Baumslag M,Rosenberg A L.Group action graphs and parallel architectures[J].SIAM Journal of Computing,1990,19:544-569.
  • 5[5]Faber V,Moore J W,Chen W Y C.Cycle prefix digraphs for symmetric interconnection networks[J].Networks,1992,23:641-649.
  • 6[6]Hoffman C.Group theoretic algorithm and graph Isomorphism[M].New York:Springer-Verlag,1982.
  • 7[7]Chen Guihai,Francis C M Lau.Shuffle-ring:a new constantdegree networks[J].International Journal of Foundations of Computer Science,1993,9(1):77-98.

同被引文献11

  • 1Cayley A. On the theory of groups [J]. Proc London Math Soc, 1878,9 : 126 - 233.
  • 2Biggs N. Algebraic graph theory [M]. London : Cambridge University Press, 1993.
  • 3Akers S B, Krishnamurthy B. A group theoretic model for symmetric interconnection networks [J]. Transactionson Computers, 1989,38 (4) : 555 - 566.
  • 4Alspach B. Cayley graphs with optimal fault tolerance [J]. IEEE Trans Comput,1992,41 (10) : 1337- 1339.
  • 5Faber V,Moore J W,Chen W Y C. Cyclic prefix digraphs for symmetric interconnection networks [J]. Networks ,1993,23: 641-649.
  • 6Sabidussi G. Vertex-transitive graphs [J]. Monatsh der Math? 1964,68 : 426 - 438.
  • 7聂晓冬.两个互联网络拓扑结构的容错性分析[D].北京:中国科学院数学与系统科学研究院,2003.
  • 8Day K, Tripathi A. Arrangement graphs : a class of generalized star graphs [J]. Information Processing Letters ,1992,42 (5): 235-241.
  • 9Day K, Tripathi A. Embedding of cycles in arrangement graphs [J]. IEEE Transactions on Computers , 1993, 42(8): 1002-1006.
  • 10Bai L Q,Ebara H,Nakano H,et al. Fault-tolerant broadcasting on arrangement graph [J]. The ComputerJournal, 1998,41 (3):171-184.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部