期刊文献+

度为n的余半单Hopf代数的表示 被引量:5

Representation of Degree n for Cosemisimple Hopf Algebras
下载PDF
导出
摘要 设H是代数闭域k上的余半单Hopf代数,n为正奇数.如果H除了含有一个维数为n2的单子余代数外,只含有维数不超过(2n-1)2的奇维数的单子余代数,且这些单子余代数的维数均不相同,则H或者包含一个阶为3,或5,或7,…,或n的群样元,或者存在一个n维自共轭基元xn,使得x2n=1+x3+x5+…+x2n-1,其中x3,x5,…,x2n-1是g(H)的基,且|x3|=3,|x5|=5,…,|x2n-1|=2n-1. Let H be a cosemisimple Hopf algebra over an algebrically closed field k and n an odd positive integer.It is shown that if H only has simple distinct subcoalgebra of odd dimension which is no more than(2n-1)~2 except that H has a simple subcoalgebra of dimension n^2,then H contains either a grouplike element of order 3 or 5,or 7,…,or n,or there is a n-dimension self conjugate basic element x_n with x^2_n=1+x_3+x_5+…+x_(2n-1),where x_3,x_5,…,x_(2n-1) are basic elements of g(H) with |x_3|=3,|x_5|=5,…,(|x_(2n-...
作者 吴美云
机构地区 南通大学理学院
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第6期1-3,共3页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10471121) 南通大学自然科学基金资助项目(05Z006)
关键词 余半单 HOPF代数 单子余代数 cosemisimple Hopf algebra simple subcoalgebra
  • 相关文献

参考文献4

  • 1[1]Kaplansky I.Bialgebras[M].Chicago:University of Chicago Press,1975.
  • 2[2]Nichols W D,Richmond M B.The Grothendick Group of a Hopf Algebra[J].J Pure Appl Algebras,1996,106:297-306.
  • 3[3]Burcic S.Representations of Degree Three for Semisimple Hopf Algebras[J].J Pure Appl Algebras,2004,194:85-93.
  • 4[4]Montgomery S.Hopf Algebras and Their Actions on Rings[M].Prividence:American Mathematical Society,1993.

同被引文献34

  • 1金慧萍.模具有CS性质的环[J].西南师范大学学报(自然科学版),2006,31(6):4-6. 被引量:1
  • 2Virelizier A. Hopf Group-coalgebras[J]. Journal of Pure and Applied Algebra, 2002, 171 : 75 -- 122.
  • 3Wang Shuan-hong. Coquasitriangular Hopf Group Algebras and Drinfel'd Co-Doubles [J]. Comm Algebra, 2007, 35= 1 --25.
  • 4Wang Shuan-hong. Morita Contexts, π- Galois Extensions for Hopf π- coalgebras [J]. Comm in Algebra, 2006, 34: 521 - 546.
  • 5Sweedler M E. Hopf Algebra [M]. New York: Benjiamin, 1969.
  • 6Gabriel P. Unzerlegbare Darstellungen I [J]. Manuscripta Math, 1972, 6:71 - 103.
  • 7Auslander M, Reiter I, Smal S O. Representation Theory of Artin Algebras [M]. London: Cambridge University Press, 1995:49 - 70.
  • 8ABE E. Hopf Algebras [M]. Cambridge: Cambridge University Press, 1980: 1- 59.
  • 9MONTGOMERY S. Hopf Algebras and Their Actions on Rings [J]. Reg Conf Series in Math, 1993, 82:1 -- 108.
  • 10KASSEL C. Quantum Groups [M]. New York: Springer-Verlag, 1995:1 -199.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部