摘要
设{(ξt),t≥0}为平稳高斯过程,E((ξt))=0,E(2ξ(t))=1,E(ξ(0)(ξt))=r(t).当r(t)logt r∈(0,∞),且r(t)单调下降到零时,得到了M(T)=sup{ξ(t);0≤t≤T}的极限分布.
Let {ξ(t),t≥0} be a stationary Gaussian process with E(ξ(t))=0,E(ξ~2(t))=1,E(ξ(0)ξ(t))=r(t).When r(t)logtr∈(0,∞) and r(t) converges to zero monotonely,the limiting distribution of M(T)=sup{ξ(t),t≥0} has been obtained in this paper.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第6期46-49,共4页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
平稳高斯过程
最大值
极限分布
stationary Gaussian Processes
maxima
limiting distribution