期刊文献+

平稳高斯过程最大值的极限分布

Limiting Distribution for the Maxima of Stationary Gaussian Processes
下载PDF
导出
摘要 设{(ξt),t≥0}为平稳高斯过程,E((ξt))=0,E(2ξ(t))=1,E(ξ(0)(ξt))=r(t).当r(t)logt r∈(0,∞),且r(t)单调下降到零时,得到了M(T)=sup{ξ(t);0≤t≤T}的极限分布. Let {ξ(t),t≥0} be a stationary Gaussian process with E(ξ(t))=0,E(ξ~2(t))=1,E(ξ(0)ξ(t))=r(t).When r(t)logtr∈(0,∞) and r(t) converges to zero monotonely,the limiting distribution of M(T)=sup{ξ(t),t≥0} has been obtained in this paper.
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第6期46-49,共4页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 平稳高斯过程 最大值 极限分布 stationary Gaussian Processes maxima limiting distribution
  • 相关文献

参考文献6

  • 1[1]Leadbetter M R,Georg Lindgren,Holger Rottzen.Extremes and Related Properties of Random Sequences and Processes[M].New York:Springer-Verlag,1983:217-237.
  • 2[2]Mittal Y,Ylvisaker D.Limiting Distribution for the Maxima of Stationary Gaussian Processes[J].Stochastic Process and Their Application,1975,3:1-18.
  • 3[3]McCormick W P.Weak Convergence for the Maxima of Stationary Gaussian Processes Using Random Normalization[J].Ann Prob,1980,8:483-497.
  • 4[4]Pickands J.Maxima of Stationary Gaussian Processes[J].Z Wahrsch Verw Gebiete,1967,7:190-223.
  • 5[5]Berman S M.Maxima and High Level Excursions of Stationary Gaussian Processes[J].Trans Amer Math Soc,1971,160:65-85.
  • 6[6]Qualls C,Watanabe H.Asymptotic Properties of Gaussian Process[J].Ann Math Statist,1972,43:580-596.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部