期刊文献+

一类高阶微分方程的代数体允许解

Admissible algebroid solutions of a type of higher-order algebraic differential equations
下载PDF
导出
摘要 利用亚纯函数的Nevan linna值分布理论,研究了一类代数微分方程的允许解的存在性问题,改进了N.Toda和M.Kato的一个结果.例子说明了这一改进的结果更精确. Using the Nevanlinna value distribution theory of meromorphic functions,solution to the existence problem of admissible algebroid solutions of some algebraic differential equations is obtaimed which improves a result of N.Toda and M.Kato.An Example shows that this result is more precise.
作者 邱青
机构地区 暨南大学数学系
出处 《暨南大学学报(自然科学与医学版)》 CAS CSCD 北大核心 2006年第3期333-336,340,共5页 Journal of Jinan University(Natural Science & Medicine Edition)
基金 广东省自然科学基金(04010474)资助项目
关键词 代数体函数 允许解 微分方程 algebroid functions admissible solution higher-order algebraic differential equations.
  • 相关文献

参考文献14

  • 1[1]TODA N,KATO M.On some algebraic differential equations with admissible algebroidsolutions[J].Proc Japan Acad,Ser.A,1985,61:325 -328.
  • 2[2]GAO Ling-yun.On some generalized higher-order algebraic differential equations with admissible algeroid solutions[J].Indian J of Math,2001,43 (2):163-175.
  • 3[3]KATAJAMAKI K.Value distribution of some differential polynomials of entire algebroid functions[J].Complex Variables,1996,30:135-144.
  • 4[4]HE Yu-zan,XIAO Xiu-zhi.Admissible solutions of ordinary differential equations[J].Contemporary Math,1983,25:51 -61.
  • 5[5]HE Yu-zan.On algebroid solutions of ordinary differential equations[J].Acta Math Sinica,1981,24:464-471.
  • 6[6]XIAO Xiu-zhi,HE Yu-zan.Meromorphic and algebroid solutions of higher-order algebraic differential equations[J].Sci China(Series A),1983,10:1034-1043.
  • 7[7]GAO Ling-yun.Admissible meromorphic solutions of ordinary differential equations[J].Ann of Math,Ser A,1999,20(2):221 -228.
  • 8[8]BAESCH A,STEINMETZ N.Exceptional solutions of n-th order periodic linear differential equations[J].Complex Variables Theory Appl,1997,34 (1):7-17.
  • 9[9]STEINMETZ N.Meromorphic solutions of second -order algebraic differential equations[J].Complex Variables Theory Appl,1989,13 (1):75-83.
  • 10[10]STEINMETZ N.Exceptional values of solutions of linear differential equations[J].Math Z,1989,201 (3):317-326.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部